Studies of surface two-dimensional photonic band-gap structures

Cross, A W and Konoplev, I V and Phelps, A D R and Ronald, K (2003) Studies of surface two-dimensional photonic band-gap structures. Journal of Applied Physics, 93 (4). pp. 2208-2218. ISSN 0021-8979 (https://doi.org/10.1063/1.1531816)

[thumbnail of Surface_Photonic_Bandgap_2003_J_Appl_Physics_Cross_et_al] PDF. Filename: Surface_Photonic_Bandgap_2003_J_Appl_Physics_Cross_et_al.pdf
Final Published Version

Download (289kB)

Abstract

Two-dimensional (2D) surface photonic band-gap (SPBG) structures can be obtained by providing a shallow corrugation of the inner surface of a waveguide wall. It can be used as a distributed mirror, a cavity, or a filter in integrated optics or microwave electronics. These structures can also be an alternative to conventional 2D PBG or 1D Bragg structures. In this article, we present the results of theoretical and experimental studies of 2D SPBG structures. Data obtained from experiments are compared with theoretical results and good agreement between theory and experiment is demonstrated. Comparison of a coaxial 2D SPBG structure with a conventional 1D Bragg structure is also presented.

ORCID iDs

Cross, A W ORCID logoORCID: https://orcid.org/0000-0001-7672-1283, Konoplev, I V, Phelps, A D R ORCID logoORCID: https://orcid.org/0000-0002-1100-1012 and Ronald, K ORCID logoORCID: https://orcid.org/0000-0002-8585-0746;