Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation

Fyfe, Paul K and Westrop, Gareth D and Silva, Ana Marta and Coombs, Graham H and Hunter, William N (2012) Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation. Proceedings of the National Academy of Sciences, 109 (29). pp. 11693-11698.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Thiol-dependent reductase I (TDR1), an enzyme found in parasitic Leishmania species and Trypanosoma cruzi, is implicated in deglutathionylation and activation of antimonial prodrugs used to treat leishmaniasis. The 2.3 Å resolution structure of TDR1 reveals a unique trimer of subunits each containing two glutathione-S-transferase (GST) domains. The similarities of individual domains and comparisons with GST classes suggest that TDR1 evolved by gene duplication, diversification, and gene fusion; a combination of events previously unknown in the GST protein superfamily and potentially explaining the distinctive enzyme properties of TDR1. The deglutathionylation activity of TDR1 implies that glutathione itself has regulatory intracellular roles in addition to being a precursor for trypanothione, the major low mass thiol present in trypanosomatids. We propose that activation of antiparasite Sb(V)-drugs is a legacy of the deglutathionylation activity of TDR1 and involves processing glutathione adducts with concomitant reduction of the metalloid to active Sb(III) species.