Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug

Boateng, J. S. and Matthews, Kerr H. and Auffret, Anthony D. and Humphrey, Mike J. and Eccleston, Gillian M. and Stevens, Howard N. (2012) Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Development and Industrial Pharmacy, 38 (1). pp. 47-54. ISSN 0363-9045

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Drug release characteristics of freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose have been investigated and compared. In vitro drug dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 272 nm using distilled water. The dissolution profiles of hydrochlorothiazide from the wafers and films were compared by determining the rates of drug release, estimated from the % release versus time profiles and calculating their difference (f1) and similarity (f2) factors. The effects of drug loading, polymer content and amount of glycerol (GLY) (films) on the drug release characteristics of both formulations were investigated. Both the wafers and films showed sustained type release profiles that were best explained by the Korsmeyer–Peppas equation. Changes in the concentration of drug and GLY (films) did not significantly alter the release profiles whilst increasing polymer content significantly decreased the rate of drug release from both formulations. The rate of release was faster from the wafers than the corresponding films which could be attributed to differences in the physical microstructure. The results show the potential of employing both formulations in various mucosal drug delivery applications.