Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Mitochondrial organization and Ca2+ uptake

Olson, Marnie L and Chalmers, Susan and McCarron, John G (2012) Mitochondrial organization and Ca2+ uptake. Biochemical Society Transactions, 40 (1). pp. 158-167.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Mitochondria may function as multiple separate organelles or as a single electrically coupled continuum to modulate changes in [Ca2+]c (cytoplasmic Ca2+ concentration) in various cell types. Mitochondria may also be tethered to the internal Ca2+ store or plasma membrane in particular parts of cells to facilitate the organelles modulation of local and global [Ca2+]c increases. Differences in the organization and positioning contributes significantly to the at times apparently contradictory reports on the way mitochondria modulate [Ca2+]c signals. In the present paper, we review the organization of mitochondria and the organelles role in Ca2+ signalling.