Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Solution-phase photochemistry of a [FeFe]hydrogenase model compound: evidence of photoinduced isomerisation

Kania, Rafal and Frederix, Pim W. J. M. and Wright, Joseph A. and Ulijn, Rein V. and Pickett, Christopher J. and Hunt, Neil T. (2012) Solution-phase photochemistry of a [FeFe]hydrogenase model compound: evidence of photoinduced isomerisation. Journal of Chemical Physics, 136 (4). -. ISSN 0021-9606

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (mu-S(CH2)(3)S)Fe-2(CO)(4)(PMe3)(2) has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds. (C) 2012 American Institute of Physics. [doi:10.1063/1.3679387]