Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Design consideration for surface-enhanced (resonance) raman scattering nanotag cores

Larmour, Iain A. and Argueta, Erick A. and Faulds, Karen and Graham, Duncan (2012) Design consideration for surface-enhanced (resonance) raman scattering nanotag cores. Journal of Physical Chemistry C, 116 (4). pp. 2677-2682. ISSN 1932-7447

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Surface-enhanced (resonance) Raman spectroscopy (SE(R)RS) holds great promise for the in vivo detection of multiple disease markers. Nanotags consisting of a metallic nanoparticle decorated with reporter molecules encapsulated in either an inert or biofunctionalized shell, for inactive or active targeting, have been developed. To improve the tissue depth from which the signal can be detected, it is preferable to operate with excitation in the near-infrared wavelengths; however, this reduces the inherent Raman signal intensity. The signal strength can be reestablished by matching the absorbance of the nanoparticle with the laser excitation. However, nanopartides must get physically larger to support absorbances in the near-infrared region, which can have an adverse affect on cellular uptake. In this paper we compare the use of silver nanoparticles with plasmon absorbances at longer wavelengths with clusters (2-4 nanopartides) formed from much smaller nanoparticles which support so-called "hot spots". We find that the small clusters outperform the resonant single nanoparticles with respect to the observed SE(R)RS signal. It has also previously been shown in the literature that small nanoparticles are more readily taken up into cells than larger nanoparticles. This knowledge combined with the results reported here highlight an important design consideration in that new SE(R)RS active nanotags should be made from coupled small dimensional nanoparticles rather than large single nanoparticles that support absorbances in the near-infrared region.