Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Colorimetry and efficiency of white LEDs : Spectral width dependence

Taylor, Elaine and Edwards, Paul and Martin, Robert (2012) Colorimetry and efficiency of white LEDs : Spectral width dependence. Physica Status Solidi A: Applications and Materials Science, 209 (3). pp. 461-464. ISSN 0031-8965

[img]
Preview
PDF (pss(a)209p461)
Taylor_ICNS9_r3.pdf
Accepted Author Manuscript

Download (155kB) | Preview

Abstract

The potential colour rendering capability and efficiency of white LEDs constructed by a combination of individual red, green and blue (RGB) LEDs are analysed. The conventional measurement of colour rendering quality, the colour rendering index (CRI), is used as well as a recently proposed colour quality scale (CQS), designed to overcome some of the limitations of CRI when narrow-band emitters are being studied. The colour rendering performance is maximised by variation of the peak emission wavelength and relative intensity of the component LEDs, with the constraint that the spectral widths follow those measured in actual devices. The highest CRI achieved is 89.5, corresponding to a CQS value of 79, colour temperature of 3800 K and a luminous efficacy of radiation (LER) of 365 lm/W. By allowing the spectral width of the green LED to vary the CRI can be raised to 90.9, giving values of 82.5 and 370 lm/W for the CQS and LER, respectively. The significance of these values are discussed in terms of optimising the possible performance of RGB LEDs.