Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

A computational fluid dynamic analysis of the effect of side draughts and nozzle diameter on shielding gas coverage during gas metal arc welding

Ramsey, Gemma and Galloway, Alexander and McPherson, Norman and Campbell, Stuart and Scanlon, Thomas (2012) A computational fluid dynamic analysis of the effect of side draughts and nozzle diameter on shielding gas coverage during gas metal arc welding. Journal of Materials Processing Technology, 212 (8). pp. 1694-1699. ISSN 0924-0136

[img] PDF
Galloway_AM_Pure_A_computational_fluid_dynamic_analysis_of_the_effect_of_side_draughts_and_nozzle_diameter_on_shielding_gas_coverage_during_gas_metal_arc_welding_2012_2_.pdf
Preprint

Download (1MB)

Abstract

Extensive experimental trials were conducted, emulating the conditions modelled, in order to validate the computational fluid dynamic results. Final results demonstrated that a more constricted nozzle was more effective at creating a stable gas column when subjected to side draughts. Higher shielding gas flow rates further reduce the gas column's vulnerability to side draughts and thus create a more stable coverage. The results have highlighted potential economic benefits for draught free environments, in which, the shielding gas flow rate can effectively be reduced.