Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

On output feedback nonlinear model predictive control using high gain observers for a class of systems

Imsland, L. and Findeisen, R. and Bullinger, Eric and Allgöwer, F. and Foss, B.A. (2001) On output feedback nonlinear model predictive control using high gain observers for a class of systems. In: UNSPECIFIED.

[img]
Preview
PDF
10.1.1.16.3388_1_.pdf - Preprint

Download (148kB) | Preview

Abstract

In recent years, nonlinear model predictive control schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in connection to nonlinear predictive control. Most of the existing approaches for output feedback nonlinear model predictive control do only guarantee local stability. Here we consider the combination of stabilizing instantaneous NMPC schemes with high gain observers. For a special MIMO system class we show that the closed loop is asymptotically stable, and that the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme are recovered for a high gain observer with large enough gain and thus leading to semi-global/non-local results.