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Abstract: In recent years, nonlinear model predictive control schemes have been
derived that guarantee stability of the closed loop under the assumption of full
state information. However, only limited advances have been made with respect to
output feedback in connection to nonlinear predictive control. Most of the existing
approaches for output feedback nonlinear model predictive control do only guarantee
local stability. Here we consider the combination of stabilizing instantaneous NMPC
schemes with high gain observers. For a special MIMO system class we show that
the closed loop is asymptotically stable, and that the output feedback NMPC scheme
recovers the performance of the state feedback in the sense that the region of attraction
and the trajectories of the state feedback scheme are recovered for a high gain observer
with large enough gain and thus leading to semi-global/non-local results.
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1. INTRODUCTION

Model predictive control for systems described
by nonlinear ODEs (NMPC) is an area that
has received considerable attention over the past
years. Several schemes guaranteeing stability un-
der state feedback exist, see for example (Mayne
et al., 2000; Allgöwer et al., 1999; De Nicolao et

al., 2000) for recent reviews.
Fewer results are available in the case when not all
states are directly measured. A common approach
is to design a state feedback NMPC and to use a
state observer to obtain an estimate of the system
states used in the NMPC. In this case, little can

1 This work was done while LI visited the IST
2 corresponding author

be said about the stability of the closed loop, since
there exists no universal separation principle for
nonlinear systems as it does for linear systems.
In (Michalska and Mayne, 1995) a moving hori-
zon observer is designed, that together with
the NMPC scheme proposed in (Michalska and
Mayne, 1993) is shown to lead to (semi-global)
closed loop stability if no model-plant mismatch
and disturbances are present. In (Magni et al.,
1998), see also (Scokaert et al., 1997), local
asymptotic stability for observer based discrete-
time nonlinear MPC is obtained for “weakly de-
tectable” systems. However, these results are only
of local nature, i.e. stability is guaranteed only for
a sufficiently small observer error and no exact in-
formation about the required “level of smallness”



is available.
In this article we propose the use of high gain ob-
servers in conjunction with instantaneous NMPC.
For a special MIMO system class, the resulting
control scheme does allow performance recovery of
the state feedback controller if the observer gain
is increased, i.e. the region of attraction and the
rate of convergence of the output feedback scheme
approach that of the state feedback scheme.
To show stability, we will mainly use results on
separation principles for the considered class of
systems as described in (Atassi and Khalil, 1999),
see also (Teel and Praly, 1995; Esfandiari and
Khalil, 1987). There, it is shown that a high-gain
observer, in combination with a globally bounded
state feedback can, under certain conditions such
as locally Lipschitz continuity of the state feed-
back law, achieve recovery of asymptotic stability
and performance.
The remainder of the paper is structured as fol-
lows. In Section 2 we specify the considered class
of systems. Section 3 states the NMPC schemes
considered for state feedback. In Section 4 the
high-gain observer for state estimation is outlined.
Section 5 contains the main results for the result-
ing closed loop system. These results are discussed
in more detail in Section 6, and are illustrated
with a simulation case study involving a mixed-
culture bio-reactor with competition and external
inhibition in Section 7.

2. SYSTEM CLASS

We consider nonlinear systems of dimension r + l
of the form

ẋ = Ax + Bφ(x, z, u) (1a)

ż = ψ(x, z, u) (1b)

y =

[

Cx
z

]

(1c)

where x(t) ∈ R
r and z(t) ∈ R

l are the state
variables and y(t) ∈ R

p+l are the measured
outputs. Notice that we assume that all states
z are directly measured. The control input is
assumed to be constrained, i.e. u(t) ∈ U ⊂ R

m

and U satisfies the following Assumption:

Assumption 1. U ⊂ R
m is compact and the origin

is contained in the interior of U .

Hence u is bounded and the equilibrium does
satisfy the input constraint.
The r× r matrix A, r× p matrix B and the p× r
matrix C have the following form:

A = blockdiag [A1, A2, . . . Ap]

Ai =





0 1 0 ··· 0
0 0 1 ··· 0
...

...
0 ··· ··· 0 1
0 ··· ··· ··· 0





ri×ri

B = blockdiag [B1, B2, . . . , Bp]

Bi =
[

0 · · · 0 1
]T

ri×1

C = blockdiag [C1, C2, . . . , Cp]

Ci =
[

1 0 · · · 0
]

1×ri
,

i.e. the first part of the dynamics x consists of p
integrator chains, with r = r1 + · · · + rp.

Assumption 2. The functions φ : R
r × R

l × U →
R

p and ψ : R
r × R

l × U → R
l are assumed

to be locally Lipschitz in their arguments over
the domain of interest with φ(0, 0, 0) = 0 and
ψ(0, 0, 0) = 0. Additionally we assume, that φ is
bounded in x everywhere 3 .

One example of systems of this class are input
affine nonlinear systems of the form

ζ̇ = f(ζ) + g(ζ)u, y = h(ζ)

with full (vector) relative degree (r1, r2, . . . , rp),
that is,

∑p

i=1 ri = dimζ. Then, it is possible to
find a coordinate transformation such that the
system is described by (1a) and (1c), see (Isidori,
1985).

3. NONLINEAR MPC STATE FEEDBACK

The proposed output feedback controller consists
of a suitable high gain observer to estimate the
states and an instantaneous full state feedback
NMPC controller. In the framework of predictive
control, the input is defined by the solution of an
open loop optimal control problem that has to be
solved at all times. Here we assume that the input
to the system is derived via the following NMPC
open loop control problem:

State feedback NMPC open loop optimal

control problem:

Solve min
ū(·)

J(x(t), z(t), ū(·)) (3)

subject to:

˙̄x=Ax̄+Bφ(x̄, z̄, ū), x̄(0)=x(t) (4a)

˙̄z = ψ(x̄, z̄, ū) z̄(0) = z(t) (4b)

ū(τ)∈U , τ ∈ [0, Tp] (4c)

(x̄(Tp), z̄(Tp))∈Ω (4d)

with the cost functional:

J(x(t), z(t), ū(·)) :=

∫ Tp

0

F (x̄(τ), z̄(τ), ū(τ))dτ

+E(x̄(Tp), z̄(Tp)).

(5)

3 The assumption on global boundedness of φ in x is

strong. But note that global boundedness in most cases can
be practically achieved by saturation outside a compact
subspace of R

r of interest.



The bar denotes internal controller variables and
x̄(·) is the solution of (4a)-(4b) driven by the input
ū(·) : [0, Tp] →U with initial condition x(t), z(t)
at time t. The stage cost to be minimized over
the control horizon Tp is given by F (x̄, z̄, ū). We
assume, that F satisfies:

Assumption 3. F :Rr×R
l×U→ R is continuous in

all arguments with F (0, 0, 0) = 0 and F (x, z, u)>
cF ‖(x, z, u)‖2

2 ∀(x, z, u) ∈ R
r × R

l × U , cF ∈ R
+.

The constraint (4d) in the NMPC open loop op-
timal control problem forces the final predicted
state at time τ = TP to lay in a terminal region
denoted by Ω and is thus often called terminal
region constraint. In the cost functional J , the
deviation from the origin of the final predicted
state is penalized by the final state penalty term
E.
Notice, that for simplicity we only consider in-
put constraints (besides the terminal state con-
straint). An extension to more general cases is
possible.
We denote the solution to the optimal control
problem by ū⋆(·;x(t), z(t)). The system input
used is given by the “first” value of the instan-
taneous solution of the open loop optimal control
problem ū⋆(·;x(t), z(t)):

u(x(t), z(t)) := ū⋆(τ = 0;x(t), z(t)). (6)

Several NMPC concepts that guarantee stabil-
ity and that are similar to this setup have been
proposed (Mayne and Michalska, 1990; Chen
and Allgöwer, 1998; Jadbabaie et al., 1999a),
see (Mayne et al., 2000) for a review. Similar re-
sults have also been obtained for the discrete time
case (Meadows and Rawlings, 1993; De Nicolao et

al., 1996; Findeisen, 1997).
Under the assumption that Tp, E, F are suit-
ably chosen (see for example (Chen and Allgöwer,
1998; Jadbabaie et al., 1999a; Mayne et al., 2000))
the origin of the nominal closed–loop system with
the input (6) is asymptotically stable and the
region of attraction R ⊂ R

r × R
l contains the set

of states for which the open loop optimal control
problem has a solution.
We will assume that Tp, E, F are chosen such,
that the state feedback defined via the NMPC
open loop optimal control problem and (6) is
locally Lipschitz and stabilizes the system, i.e. we
assume that the following assumption holds:

Assumption 4. The instantaneous state feedback
defined by u(x(t), z(t)) := ū⋆(τ = 0;x(t), z(t)) is
locally Lipschitz in (x, z) and asymptotically sta-
bilizes the system (1) with a region of attraction
R .

Remark 1. Notice that we assume an instanta-
neous state feedback, i.e. the solution of the open

loop optimal control problem is available with no
computational delay.

Remark 2. In general, the solution of an optimal
control problem (and hence, the state feedback
defined in Assumption 4) can be non-Lipschitz in
the initial values. In (Jadbabaie et al., 1999b) it is
noted that the control of an unconstrained NMPC
problem is continuous given that the minimum
value of the cost function is attained, and that
some regularity conditions on f , F and E, similar
to those in this paper hold. Some results con-
cerning the Lipschitz continuity of optimal con-
trol problems have been reported (Hager, 1979;
Dontchev and Hager, 1993). However the result-
ing conditions are difficult to check and do only
consider the Lipschitz continuity of the control
law in terms of system parameters and not initial
conditions.

4. USED HIGH GAIN OBSERVER

The proposed (partial state) observer is a high
gain observer as in (Atassi and Khalil, 1999; Teel
and Praly, 1995; Tornambè, 1992). It is of the
following form:

˙̂x =Ax̂ + Bφ(x̂, z, u) + H(yx − Cx̂) (7)

where H =blockdiag [H1, . . . ,Hp] ,

HT
i =

[

α
(i)
1 /ǫ, α

(i)
2 /ǫ2, . . . , α(i)

n /ǫri

]

and the α
(i)
j s are such, that the roots of

sn+α
(i)
1 sn−1+· · ·+α

(i)
n−1s+α(i)

n =0, i=1, . . ., p

are in the open left half plane. yx are the measure-
ments of the x states, yx = Cx. 1

ǫ
is the high-gain

parameter, which can be seen as a time scaling for
the observer dynamics (7). A, B, C and φ are the
same as in (1).

Remark 3. We only have to design an observer
for the x states of the integrator chain, since the
z states are assumed to be measured directly.

5. OUTPUT FEEDBACK NMPC USING
HIGH GAIN OBSERVERS

Now we are ready to state our main result, which
follows from (Atassi and Khalil, 1999) and in part
from (Teel and Praly, 1995). In short, we can claim
recovery of performance and asymptotic stability
(see Remark 4) of the origin if the parameter ǫ in
the observer is chosen small enough (that is, the
observer is fast enough).

Consider the closed loop system given by (1a)-(1c)
with the control given by the NMPC controller
as described in Section 3 satisfying Assumption 4



and using the observed state x̂ from the observer
(7) instead of x. Notice that the state feedback
NMPC is assumed to asymptotically stabilize the
system with a region of attraction R and that
the value of the input is bounded, since the input
constraint set U is compact.

Theorem 1. Let S be any compact set contained
in the interior of R. Then there exists a (small
enough) ǫ∗ > 0 such that for all 0 < ǫ ≤ ǫ∗,
the closed loop system is asymptotically stable
with a region of attraction of at least S. Further,
the performance of the state feedback NMPC
controller is recovered as ǫ decreases.

Proof 1. The asymptotic stability follows directly
from the proofs of Theorem 1, 2 and 4 in (Atassi
and Khalil, 1999) under the given assumptions.
Theorem 3 in (Atassi and Khalil, 1999) shows
that the trajectories of the controlled system using
the observed state in the controller, converge
uniformly to the trajectories of the controlled
system using the true state in the controller, as
ǫ → 0. Hence, for ǫ small enough, the trajectories
(and hence the performance) of the state feedback
NMPC are recovered.

In the following we briefly specify what is meant
by recovery of performance.

Remark 4. [Trajectory convergence/performance
recovery] Define χo(t, ǫ) as the state of the system
at time t using the output feedback NMPC con-
troller with χo(0, ǫ) = (x(0), z(0)) as initial condi-
tion and using x̂ from the observer (started with
the initial condition x̂(0)) instead of x in the con-
troller. Define χs(t) as the state of the system at
time t using the state feedback NMPC controller
with χs(0, ǫ) = (x(0), z(0)) as initial condition.
Then, for any ξ > 0, there exists an ǫ̃∗ such that
for all 0 < ǫ ≤ ǫ̃∗, ‖χo(t, ǫ) − χs(t)‖ ≤ ξ, ∀t > 0.
This trajectory convergence in ǫ leads to what is
meant by performance recovery and implies for
example conformance to constraints, recovery of
the region of attraction and rate of convergence.

If state constraints are included in the NMPC
formulation, then we see that the state constraints
are respected by the output feedback controller
within any degree of accuracy by making ǫ small
enough. However restrictive state constraints in
the NMPC controller may lead to violation of the
Lipschitz continuity condition on the controller,
and hence are not included.

Remark 5. (Robustness). In the separation prin-
ciple in (Atassi and Khalil, 1999), robustness to
some modeling error in the observer (that is, in
φ) is shown. In our case, it makes no sense to
consider the observer model as incorrect, since we
assume that we have perfect model knowledge in

the NMPC controller. However, it indicates that
the observer structure has some robustness prop-
erties (see (Teel and Praly, 1995, Lemma 2.4)).

6. DISCUSSION

The result in Section 5 is based on the assump-
tion that the NMPC controller is time contin-
uous/instantaneous. In a real application, it is
of course not possible to solve the nonlinear op-
timization problem instantaneously. Instead, it
typically will be solved only at some sampling
instants. The first part of the computed control
is then applied to the system, until the next sam-
pling instant. Further, some time is needed to
compute the optimal solution of the optimization
problem, thus the computed control to some de-
gree is based on old information, introducing delay
in the closed loop.
In a transient phase, due to the peaking phe-
nomenon, the observed state may be outside the
region where the NMPC optimization problem has
a feasible solution. In this case the input should
be assigned some fallback value. The high gain
observer structure and the results of (Atassi and
Khalil, 1999) ensure that ǫ can be chosen small
enough so that the observer state converges to
the true state before the true state leaves the re-
gion of attraction (and hence the feasibility area)
of the NMPC controller. This follows from the
assumption of bounded controls (Esfandiari and
Khalil, 1992).

7. EXAMPLE

To show recovery of performance we consider the
control of a continuous mixed culture bioreactor
as presented in (Hoo and Kantor, 1986). The
model considered describes the dynamics of a
culture of two cell strains, in the following called
species 1 and 2, that have different sensitivity to
an external growth-inhibiting agent. The interac-
tions of the two cell populations is illustrated in
Figure 1. The cell density of the inhibitor resistant

resistant strain, c1

cell density cell density

Substrat, S

sensitive strain, c2

Inhibitor, I

competition

Fig. 1. Strain/inhibitor interactions.

strain is denoted by c1, the cell density of the
inhibitor sensitive strain is denoted with c2 and
the substrate and inhibitor concentrations in the
reactor are denoted by S and I. Following the
description in (Hoo and Kantor, 1986) a reduced
third order model of the following form can be
obtained:



dc1

dt
= µ1(S)c1 − c1u1,

dc2

dt
= µ2(S, I)c2 − c2u1,

dI

dt
=−pc1I + u2 − Iu1.

The inputs are the dilution rate u1 = D and the
inhibitor addition rate u2 = DIf , with If being
the inhibitor inlet concentration. The deactivation
constant of the inhibitor for species 2 is denoted
by p. µ1(S) and µ2(S, I) are the specific growth
rates given by:

µ1(S) =
µ1,MS

K + S
, µ2(S, I) =

µ2,MS

K + S

KI

KI + I
.

where K, KI , µ1,M and µ2,M are constant param-
eters. The substrate concentration is given by:

S = Sf − c1

Y1
− c2

Y2
.

Here Y1, Y2 are the yields of the species and Sf

is the substrate inlet concentration. The control
objective is to stabilize the steady state given by
c1s = 0.016g/l, c2s = 0.06g/l, Is = 0.005g/l. We
will use the output-feedback NMPC scheme as
outlined in the previous sections to achieve this.
If we use

yT = [ln
c1

c2
, c1]

as measured outputs and if we make the following
coordinate transformation

x1 = ln
c1

c2
, x2 = µ1(S) − µ2(S, I), z = c1

the transformed system is of the model class as-
sumed in Section 2:

ẋ1 = x2,

ẋ2 = φ(x1, x2, z, u1, u2),

ż = ψ(x1, x2, z, u1, u2).

As NMPC scheme we use the so called quasi-
infinite horizon NMPC strategy as presented
in (Chen and Allgöwer, 1998) with the sampling
time set to zero. As cost F we use the quadratic
deviation of the states and the inputs in the new
coordinates from their steady state values. For
simplicity unit weights on all states and inputs
are considered. The horizon Tp was set to 20hr. A
quadratic upper bound E on the infinite horizon
cost and a terminal region Ω that satisfy the
assumptions of (Chen and Allgöwer, 1998) and
with this the assumptions made in Section 3 are
calculated using LMI/PLDI-techniques (Boyd et

al., 1994). The piecewise linear differential in-
clusion (PLDI) representing the dynamics in a
neighborhood of the origin was found using the
methods described in (Slupphaug et al., 2000).
The states x1 and x2 are estimated from the mea-
surements of x1 and z via a high gain observer as

described in Section 4. The parameters α1 and α2

are chosen to α1 =
√

2, α2 = 1. To show the recov-
ery of performance we consider different values of
the high-gain parameter ǫ of the observer. Notice,
that in real applications the value of ǫ should
not be decreased to much, since there is always
a trade off between the performance recovery and
the robustness to noise and modeling errors. For
all cases the observer is started with the correct
values for x1 and x3 (since they can be directly
obtained from the measurements), whereas x2 is
assumed unknown and initialized with the steady
state value. Figure 2 shows closed-loop system tra-
jectories for different observer gains 1

ǫ
in compari-

son to a state feedback NMPC controller (using no
high gain observer for state recovery). As can be
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eps=1
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Fig. 2. Phase plot of c1 and c2 (SS. . . steady state)

seen, the higher the observer gain gets, the more
performance is recovered by the output feedback
controller, i.e. the trajectories tend towards the
“optimal” state feedback ones. Figure 3 exempli-
fies the time behavior of the inhibitor concentra-
tion I (related to the unmeasured state x2) and
the inhibitor addition rate DIF (input u2) for
different values of ǫ. Additionally, we plot the real
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Fig. 3. Trajectories of I, u1 and summed up cost

cost that occurs, i.e. the integrated quadratic error
between the steady state values for the states and
inputs in transformed coordinates. As one can see,
the state feedback controller leads to the lowest



cost. The cost of the output feedback controller
approaches the cost of the state feedback con-
troller for decreasing ǫ, which shows the recovery
of performance.
Notice, that we use relatively low gains of the
observer, meaning that ǫ is large. Higher observer
gains can lead to problems in case of measurement
noise. This is one of the main limitations of using
high gain observers for state estimation. We do
not go into details here. The given example under-
pins the derived results on performance recovery
for the high-gain observer based NMPC strategy.

8. CONCLUSIONS

Nonlinear model predictive control has received
considerable attention during the recent years.
However no significant progress with respect to
the output feedback case has been made. The ex-
isting solutions are either of local nature (Scokaert
et al., 1997; Magni et al., 1998) or difficult
to implement (Michalska and Mayne, 1995). In
this paper we have outlined, that using results
from (Atassi and Khalil, 1999), “semi-global” sta-
bility results on a bounded region of attraction
and recovery of performance can be achieved uti-
lizing NMPC and a suited high gain observer for
a class of systems. The price to pay is that one
has to assume that the NMPC control law is local
Lipschitz in the states over the domain of interest
and that only systems with “directly measurable
internal dynamics” can be considered. However, in
practical problems the locally Lipschitz assump-
tion is often not a significant problem. Addition-
ally, one should notice the inherent problem of
high gain observers with respect to measurement
noise. The given result must be seen as a first step
towards the development of a practical relevant
output feedback NMPC scheme.
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