Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Time varying optimal control of a non-linear system

Grimble, M.J. and Martin, P. (2003) Time varying optimal control of a non-linear system. In: 42nd IEEE Conference on Decision and Control 2003, 2003-12-09 - 2003-12-12.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The solution is given to a time-varying optimal state feedback problem with stochastic disturbances. The system is composed of a plant and disturbance model represented by polynomials in the delay operator, z(-1), leading to a solution involving spectral factorisation of operator equations and Diophantine operator equations. The cost function is over infinite time and the assumption is made that the system is time-varying for T steps into the future from the current sample and time-invariant thereafter. For a time-invariant system over infinite time, the optimal controller is a constant state-feedback matrix gain. Thus, with the assumption of time-invariance from T to, the feedback gain may be calculated using constant system polynomials. The solution of the spectral factors and Diophantine equations may then be computed recursively, for a scalar plant, working from T steps ahead to the current time. The controller calculated for the current time is then applied to the system. If the input non-linearity of a plant is represented in time-varying form, the time-varying ideas may be used to produce a nonlinear controller for the system. The example in this paper is for a smooth saturation non-linearity represented by a tanh function. Simulation results are given and it is clear that performance gains over a time-invariant controller are possible.