Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Carbamazepine is not a substrate for p-glycoprotein

Owen, A. and Pirmohamed, M. and Tettey, J.N.A. and Morgan, P. and Chadwick, D. and Park, B.K. (2001) Carbamazepine is not a substrate for p-glycoprotein. British Journal of Clinical Pharmacology, 51 (4). pp. 345-349. ISSN 0306-5251

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Aims to determine whether the anticonvulsant carbamazepine (CBZ), a known CYP3A4 substrate, is also a substrate for the multidrug efflux transporter P-glycoprotein (Pgp). The role of Pgp in the transport of CBZ was assessed in three systems: (a) in mdr1a/1b(−/−) and wild-type mice after administration of 2 mg kg−1 and 20 mg kg−1, which served as a model for brain penetration; (b) in Caco-2 cells, an in vitro model of the intestinal epithelium that is known to express high Pgp levels; and (c) by flow cytometry in lymphocytes using rhodamine 123, a fluorescent substrate for PgP. Brain penetration of both doses of CBZ at 1 h and 4 h was comparable in wild-type and mdr1a/1b(−/−) mice. Transport across the Caco-2 cell monolayer was Pgp-independent, and was not affected by the Pgp inhibitor PSC-833. CBZ had no effect on rhodamine 123 efflux from lymphocytes, in contrast to verapamil, which increased fluorescence intensity fivefold. CBZ is not a substrate for Pgp. Its efficacy is unlikely to be affected by Pgp over-expression in the brain. Furthermore, the interaction of CBZ with drugs that modulate both CYP3A4 and Pgp function such as verapamil is probably due to inhibition of CYP3A4 and not Pgp.