The endocannabinoid system and the molecular basis of paralytic ileus in mice
Mascolo, N. and Izzo, A.A. and Ligresti, A. and Costagliela, A. and Pinto, L. and Cascio, M.G. and Maffia, P. and Cecio, A. and Capasso, F. and Di Marzo, V. (2002) The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB Journal, 16. pp. 1973-1975. ISSN 0892-6638 (https://doi.org/10.1096/fj.02-0338fje)
Full text not available in this repository.Request a copyAbstract
The endocannabinoid system (i.e., the cannabinoid receptors and their endogenous ligands) plays an important role in the physiological control of intestinal motility. However, its participation in intestinal pathological states is still poorly understood. In the present study, we investigated the possible role of the endocannabinoid system in the pathogenesis of paralytic ileus, a pathological state consisting of decreased intestinal motility following peritonitis, surgery, or other noxious situations. Ileus was induced by i.p. administration of acetic acid, and gastrointestinal propulsion was assessed by the charcoal method. Endocannabinoid levels were measured by isotope-dilution gas chromatography-mass spectrometry, whereas cannabinoid CB1 receptors were identified by immunohistochemistry. Acetic acid administration inhibited gastrointestinal transit (ileus), and this effect was accompanied by increased levels of the endocannabinoid anandamide compared with control mice and by overexpression of CB1 receptors in myenteric nerves. Furthermore, acetic acid-induced ileus was alleviated by the CB1 receptor antagonist SR141716A and worsened by VDM11, a selective inhibitor of anandamide cellular uptake (and hence inactivation). From these findings, it can be concluded that the intestinal hypomotility typical of paralytic ileus is due, at least in part, to the enhancement of anandamide levels and CB1 expression during this condition, and that selective, nonpsychotropic CB1 receptor antagonists could represent new drugs to treat this disorder.
-
-
Item type: Article ID code: 38506 Dates: DateEvent2002PublishedSubjects: Medicine > Pharmacy and materia medica Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 14 Mar 2012 15:13 Last modified: 04 Jan 2025 01:14 URI: https://strathprints.strath.ac.uk/id/eprint/38506