Picture of satellite hovering above Earth

Open Access research exploring new frontiers in aerospace engineering...

Strathprints makes available Open Access scholarly outputs by the Department of Mechanical & Aerospace Engineering at Strathclyde, which includes an emphasis on air and space research. The Advanced Space Concepts Laboratory (ASCL), the Future Air-Space Transportation Technology Laboratory (FASTTlab) and the Intelligent Computational Engineering Laboratory (ICElab) specialise in this work.

The ASCL undertakes frontier research on visionary space systems, delivering radically new approaches to space systems engineering. Meanwhile, FASTTlab seeks to revolutionise the global air-space transportation systems and infrastructure. ICElab develops advanced research on artificial and computational intelligence techniques with particular focus on optimisation, optimal control, uncertainty-based multidisciplinary design optimisation and machine learning applied to the design and control of complex engineering systems.

Learn more and explore the Open Access research by ASCL, FASTTlab and ICElab. Or, explore all of Strathclyde's Open Access research...

High resolution electron beam measurements on the ALPHA-X laser–plasma wakefield accelerator

Welsh, Gregor H. and Wiggins, Mark and Issac, Riju and Brunetti, Enrico and Manahan, Grace and Islam, Mohammad and Cipiccia, Silvia and Aniculaesei, Constantin and Ersfeld, Bernhard and Jaroszynski, Dino (2012) High resolution electron beam measurements on the ALPHA-X laser–plasma wakefield accelerator. Journal of Plasma Physics, 78 (specia). pp. 393-399.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The Advanced Laser–Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme at the University of Strathclyde is developing laser– plasma accelerators for the production of ultra-short high quality electron bunches. Focussing such LWFA bunches into an undulator, for example, requires particular attention to be paid to the emittance, electron bunch duration and energy spread. On the ALPHA-X wakefield accelerator beam line, a high intensity ultra-short pulse from a 30 TW Ti:Sapphire laser is focussed into a helium gas jet to produce femtosecond duration electron bunches in the range of 90–220 MeV. Measurements of the electron energy spectrum, obtained using a high resolution magnetic dipole spectrometer, show electron bunch r.m.s. energy spreads down to 0.5%. A pepper-pot mask is used to obtain transverse emittance measurements of a 128±3 MeV mono-energetic electron beam. An average normalized emittance of εrms,x,y = 2.2±0.7, 2.3±0.6 π-mm-mrad is measured, which is comparable to that of a conventional radio-frequency accelerator. The best measured emittance of εrms,x, = 1.1±0.1 π-mm-mrad corresponds to the resolution limit of the detection system. 3D particle-in-cell simulations of the ALPHA-X accelerator partially replicate the generation of low emittance, low energy spread bunches with charge less than 4 pC and gas flow simulations indicate both long density ramps and shock formation in the gas jet nozzle.