Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Performance assessment of MIMO systems under partial information

Xia, H. and Majeckie, P. and Ordys, A.W. and Grimble, M.J. (2004) Performance assessment of MIMO systems under partial information. In: American Control Conference 2004, 2004-06-30 - 2004-07-02, Boston.

[img]
Preview
PDF
01384465.pdf - Final Published Version

Download (419kB) | Preview

Abstract

Minimum variance (MV) can characterize the most fundamental performance limitation of a system, owing to the existence of time-delays/infinite zeros. It has been widely used as a benchmark to assess the regulatory performance of control loops. For a SISO system, this benchmark can be estimated given the information of the system time delay. In order to compute the MIMO MV benchmark, the interactor matrix associated with the plant may be needed. However, the computation of the interactor matrix requires the knowledge of Markov parameter matrices of the plant, which is rather demanding for assessment purposes only. In this paper, we propose an upper bound of the MIMO MV benchmark which can be computed with the knowledge of the interactor matrix order. If the time delays between the inputs and outputs are known, a lower bound of the MIMO MV benchmark can also be determined.