Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Contrast-matching small-angle neutron scattering to monitor the accessibility of solvents to the porosity of coked FCC catalysts

Castro-Diaz, M. and Hall, P.J. and Snape, Colin and Brown, S.D. and Hughes, R. (2002) Contrast-matching small-angle neutron scattering to monitor the accessibility of solvents to the porosity of coked FCC catalysts. Industrial and Engineering Chemistry Research, 41 (25). pp. 6566-6571. ISSN 0888-5885

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Small-angle neutron scattering (SANS) has been performed on fresh and deactivated fluid catalytic cracking (FCC) equilibrium catalysts. The catalysts were coked using a vacuum gas oil feed and stripped for varying periods of time in standard microactivity test (MAT) and fluidized-bed reactors. BET surface areas and contrast-matching SANS were measured on these samples to elucidate the influence of coke on the catalyst porosity. It was found that significant contrast matching could be obtained by mixing the catalyst with deuterated methanol, and there was good agreement between the gas adsorption and SANS results in terms of the mesoporosity. SANS indicated that the level of closed porosity is negligible in the fresh catalyst but significant in the deactivated catalysts and that the level decreases as the total coke content is reduced during stripping. Furthermore, the use of d-dodecane demonstrated that SANS can also provide information about sieving effects caused by the catalyst structure.