Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction protocol for soil and sediment?

Davidson, C.M. and Hursthouse, A.S. and Tognarelli, D.M. and Ure, A.M. and Urquhart, G.J. (2004) Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction protocol for soil and sediment? Analytica Chimica Acta, 508 (2). pp. 193-199. ISSN 0003-2670

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The revised, four-step BCR sequential extraction for soil or sediment has been compared with an alternative procedure in which 0.2 mol 1(-1) ammonium oxalate (pH 3) replaced 0.5 mol 1(-1) hydroxylammonium chloride (pH 1.5) in step 2, the reducible step. A variety of substrates were studied: BCR CRM601, a sewage sludge amended soil, two industrial soils, and a steel manufacturing by-product (basic oxygen furnace filter cake). Greater amounts of iron were recovered in step 2 when acid ammonium oxalate was used, for all substrates. Similar trends were observed for copper. Manganese and zinc were not strongly affected by the procedural modification, except for zinc in the two industrial soils, where oxalate extraction proved more efficient than use of hydroxylammonium chloride. A large proportion of the calcium and lead isolated in step 2 of the BCR procedure was not released until step 3 when the alternative procedure with oxalate in step 2 was used. This is probably due to rapid precipitation of analyte oxalates from solution. Thus, whilst oxalate offers superior dissolution of iron-containing matrix components, it should not be used if calcium or lead concentrations are to be measured. Selection of the most appropriated sequential extraction protocol for use in a particular study must always be carried out on the basis of 'fitness for purpose' criteria. However, the revised BCR protocol, involving use of 0.5 mol 1(-1) (NH2OHHCI)-H-. in the reducible step, appears to be more generally applicable than procedures involving acid ammonium oxalate. (C) 2003 Elsevier B.V. All rights reserved.