Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Performance of an energy resolving X-ray pixel detector

Bates, R and Derbyshire, G and Gannon, WJF and Iles, G and Lowe, B and Mathieson, K and Passmore, MS and Prydderch, M and Seller, P and Smith, K and Thomas, SL (2002) Performance of an energy resolving X-ray pixel detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 477 (1-3). pp. 161-165. ISSN 0168-9002

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We have built a back-illuminated, silicon X-ray detector with 16×16 pixels. This is bump-bonded to an integrated circuit containing a corresponding array of pre-amplifiers. The bump-bonded unit is wire bonded to two 128 channel integrated circuits which have signal shaping, peak-hold and sparcification logic. These integrated circuits output the analogue value of the individual X-ray and the address of the 300 μm×300 μm pixel. The system has previously demonstrated X-ray spectroscopy measurement in the 5–40 keV range with a resolution of 1 keV FWHM. This paper describes the performance of the system used in an X-ray diffraction experiment performed on the Daresbury Synchrotron Radiation Source. The second part demonstrates the successful operation of this pixellated detector for spectroscopy. In this part, the variation among the pixel outputs is accounted for without significantly affecting the noise performance.