Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments

Mossop, K.F. and Davidson, C.M. (2003) Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478 (1). pp. 111-118. ISSN 0003-2670

Full text not available in this repository. Request a copy from the Strathclyde author


This article describes a detailed comparison between the original BCR sequential extraction procedure, step 2 of which involves treatment with 0.1 mol l(-1) hydroxylammonium chloride at pH 2, and the revised BCR procedure (step 2: 0.5 mol l(-1) hydroxylammonium chloride at pH 1.5). An intermediate protocol was also evaluated in which 0.5 mol l(-1) hydroxylammonium chloride at pH 2 was used. The procedures were applied to five soil and sediment substrates: a sewage sludge-amended soil, two different industrially contaminated soils, a river sediment and an inter-tidal sediment. Extractable iron and manganese concentrations were measured to assess the effects of the procedural modifications on dissolution of the reducible matrix components. Trace elements copper, lead and zinc were also determined. Statistical analysis (two-tailed t-tests at 95% confidence interval) indicated that recovery of iron in step 2 was not markedly enhanced when the intermediate protocol was used. However, significantly greater amounts were isolated with the revised BCR scheme than with the original procedure. Copper behaved similarly to iron. Lead recoveries were increased by use of both modified protocols, with the greatest effect occurring for the revised BCR extraction. In contrast, manganese and zinc extraction did not vary markedly between procedures. The work indicates that the revised BCR sequential extraction provides better attack on the iron-based components of the reducible matrix for a wide range of soils and sediments. (C) 2002 Elsevier Science B.V. All rights reserved.