Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

The creep behavior of simple structures with a stress range-dependent constitutive model

Boyle, James (2012) The creep behavior of simple structures with a stress range-dependent constitutive model. Archive of Applied Mechanics, 82 (4). pp. 495-514. ISSN 0939-1533

[img] PDF
Boyle_JT_Pure_The_creep_behaviour_of_simple_structures..._constitutive_model_Jun_2011.pdf - Preprint

Download (286kB)

Abstract

High temperature design remains an issue for many components in a variety of industries. Although finite element analysis for creep is now an accessible tool, most analyses outside the research domain use long standing and very simple constitutive models - in particular based on a power law representation. However, for many years it has been known that a range of materials exhibit different behavours at low and moderate stress levels. Recently studies of the behaviour of high temperature structures with such a stress range dependent constitutive model have begun to emerge. The aim of this paper is to examine further the detailed behaviour of simple structures with a modified power law constitutive model in order to instigate a deeper understanding of such a constitutive model's effect on stress and deformation and the implications for high temperature design. The structures examined are elementary - a beam in bending and a pressurized thick cylinder - but have long been used to demonstrate the basic characteristics of nonlinear creep.