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Abstract  High temperature design remains an issue for many components in a variety of 

industries. Although finite element analysis for creep is now an accessible tool, most analyses 

outside the research domain use long standing and very simple constitutive models – in particular 

based on a power law representation. However for many years it has been known that a range of 

materials exhibit different behaviors at low and moderate stress levels.. Recently studies of the 

behavior of high temperature structures with such a stress range dependent constitutive model have 

begun to emerge. The aim of this paper is to examine further the detailed behavior of simple 

structures with a modified power law constitutive model in order to instigate a deeper 

understanding of such a constitutive model’s effect on stress and deformation and the implications 

for high temperature design. The structures examined are elementary – a beam in bending and a 

pressurized thick cylinder – but have long been used to demonstrate the basic characteristics of 

nonlinear creep. 

Keywords Creep –  Stress range dependent constitutive model – Structural 

analysis – High temperature design 

 

1 Introduction 

Stress analysis for creep has a long history in engineering mechanics driven by the 

needs of design for high temperature in many industries but primarily power 

generation and aerospace and a growing need to ensure the reliability of solder 

joints in electronics packaging. In the absence of the computing power required 

for detailed finite element analysis of time-dependent nonlinear creep with 

complex loading histories, robust simplified methods of analysis were developed 

[1,2,3] for simple constitutive models. These simple constitutive models, for 

example the time- and strain-hardening constitutive equations, were based on 

adaptations for time-varying stress of equally simple models for the secondary 

creep stage from constant load/stress uniaxial tests where minimum creep rate is 
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constant. The most common secondary creep constitutive model has been the 

Norton-Bailey Law which gives a power-law relationship between minimum 

creep rate and (constant) stress. The unique mathematical properties of the power 

law allowed the development of robust simplified methods, many of which can be 

found in high temperature design codes. Now that detailed finite element analysis 

for creep is readily accomplished on the desktop it is perhaps surprising that the 

simple time- or strain-hardening constitutive models based on power law creep 

remain the most widely available in common commercial finite element software, 

such as ANSYS or ABAQUS, even though more comprehensive time-dependent 

nonlinear constitutive models are available (and can be included as user-defined 

materials). The most common reason for persisting with the more simple 

constitutive models is the ease with which material constants can be derived from 

experiments, the ability to check detailed solutions with simplified (robust) 

methods and an underlying understanding of the expected behavior of simple (but 

fundamental) structures subject to power law creep [1,2,3]. Nevertheless it has 

long been known  that creep over a range of stress does not follow one simple 

power law relationship, typically (approximately) following one power law at low 

stress and another at high stress – a phenomenon known as ‘power-law 

breakdown’. A common observation is a shift from a power law (usually 

dislocation) mechanism at ‘moderate’ stress to a diffusion mechanism at ‘low’ 

stress, characterized by a linear viscous relationship between creep rate and stress 

[4,5] with a more significant power-law breakdown at ‘high’ stress. Such a stress 

range dependent constitutive model, with a transition from linear to power law 

behavior, has recently been studied by Naumenko, Altenbach and Gorash [6,7,8]: 

stress analyses using this modified power law were compared to linear and pure 

power law over a range of stress and load for several simple structures. 

 

In this paper the analyses of Naumenko, Altenbach & Gorash described in [6] are 

extended to provide a more detailed representation of the behavior of two simple 

structures – the beam in bending and a pressurized thick cylinder – using this 

modified power law, in particular to add a study of the deformation characteristics 

and the role of the simplified methods of analysis developed previously for pure 

power law creep. 
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2 Secondary creep constitutive model 

The minimum creep rate ( min ) during the secondary (or steady state) deformation 

stage is often related to the (constant) applied stress () by a power law 

relationship in the form 

min
nB   (1) 

where B and n are constants determined from uniaxial creep testing. Use of a 

power law relation reflects an almost linear relationship between log(minimum 

creep rate) and log(stress) which is often found in creep tests: typical results for an 

austenitic stainless steel AISI 316L(N) taken from Rieth et al [9] are shown in 

Fig. 1. 

However many metals and alloys typically exhibit different regimes with n  1 at 

low stresses and n  4 or 5 at higher stress levels with n increasing again in the 

power law breakdown regime [4]. This is illustrated in Fig. 2, taken from [4] 

based on data on 0.5Cr0.5Mo0.25V steel from Evans et al. [10]. Indeed at lower 

temperatures (although still above that for creep) even the data from [9] shows 

similar behavior, Fig.3. Numerous attempts have been made to find a continuous 

curve to describe this behavior over the complete stress range, principal amongst 

these being the hyperbolic sine relationship 

min sinh( )B C   (2) 

and the equation proposed by Garofalo [11] 

min sinh( )nB C   (3) 

where B, C and n are constants. A more complete summary can be found in [12]. 

It is often argued that the change in behavior from low to moderate stress can be 

explained by diffusional creep theories, while the transition from moderate to high 

stress (power law breakdown) can be accounted for by diffusion-controlled 

mechanisms (such as diffusion through or along grain boundaries and movement 

of lattice dislocations, for example in pure metals. These explanations are not 

generally agreed [4]. Nevertheless there remains an obvious need to perform 

stress analysis with this type of constitutive behavior and reliable (if not perfect) 

constitutive models are required. Williams & Wilshire proposed the ‘transition 

stress’ model [13] for power law breakdown 



4 

min 0( ) pB     (4) 

where B and p are constants and p is the transition stress. Unfortunately the 

transition stress cannot be measured reliably. For the transition from low to 

moderate stress Naumenko et al [6] proposed a constitutive relationship which 

assumed that the physical mechanisms were independent and that the 

corresponding creep rates could simply be added: 

min

0 0 0

n
  
  

 
   

 




 (5) 

where 0,  0 and n are material constants. The stress 0 is a different kind of 

transition stress from that of Williams & Wilshire since it specifies the stress level 

at which the behavior changes from linear (viscous) to power law, Fig. 4. Eqn. 5, 

which we shall refer to as a ‘modified power law’ for simplicity, was used by 

Naumenko, Altenbach and Gorash [6,7] to examine how the stress system in 

simple components – uniaxial stress relaxation, a beam in bending and a 

pressurized thick cylinder – would change as compared to purely linear and purely 

power-law behavior. In this paper the beam and thick cylinder problems will be 

re-examined in more detail – the stress relaxation problem will be considered 

elsewhere in the context of a more detailed analysis of elastic follow-up [14]. 

 

3. Simple component behavior 

3.1 Pure bending of a beam 

The classic problem of the pure bending of a rectangular cross section (b  h) 

beam with a modified power law (stress range dependent constitutive model) 

subjected to a bending moment M has been considered by Naumenko, Altenbach 

& Gorash [6]. The geometry and loading are as shown in Fig.5. In the following, 

the notation from [6] is essentially maintained, but with minor variations. 

 

Under a constant applied bending moment under secondary creep the rate of 

curvature   of the center-line of the beam is related, assuming pure bending, to 

the axial (longitudinal) creep strain rate 

x z    (6) 
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where z is measured from the center-line as shown in Fig. 5. 

 

The bending moment is related to the axial stress x through the equilibrium 

equation 

/2

0
2

h

xM b zdz   (7) 

The constitutive equation is taken as Eqn.(5). 

 

As in [6], dimensionless (normalized) variables are defined as 

0 0 0

2

2
xz h

s e
h

   
  

    
  
 

 

Introducing a dimensionless load factor 
0

M

W



  , where 

2

6

bh
W   is the section 

moment, Eqns. (5), (6) & (7) can be rewritten and combined as: 

1

0
( ) 3e f s s d        

where ( ) nf s s s  . 

Then the rate of change of normalized curvature   can be found, for a prescribed 

load factor  and creep exponent n, from a solution of the non-linear equation 

1 1

0
3 ( ) 0f d        (8) 

which is expressed in a different, but equivalent, form in [6]. The longitudinal 

stress distribution s() as it varies with through the thickness  of the beam is then 

derived from the solution of the non-linear equation 

1( ) ( )s f    (9) 

For pure power law creep, ignoring the linear viscous part in Eqn. (5), the solution 

to Eqns. (8) & (9) corresponds (using the current normalization scheme) to the 

familiar steady state creep solution for a beam in bending [1, 2, 3, 12]: 

1/2 1 2 1

3 3

n
nn n

s
n n

      
 

  

For pure linear (viscous) behavior, the solution is equivalent to that for linear 

elasticity 

s     
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We can then interpret the load factor  as the ratio of the maximum linear (elastic) 

stress in the beam to the transition stress 0. Of course both the classic steady state 

and linear elastic solutions can be normalized such that the normalized curvature 

rate and longitudinal stress are independent of the load factor , but this is not 

done for the modified stress range dependent constitutive equation, Eqn.(5). 

 

3.2 Pressurized thick cylinder 

The classic problem of a pressurized thick cylinder was also considered by 

Naumenko, Altenbach & Gorash [6,7] as an example of secondary creep using a 

modified power law under multi-axial stress. In the following the notation of [6] is 

repeated, again with minor variations: 

 

Assume that the cylinder is long and uniformly heated, with an inner radius a and 

an outer radius b, as shown in Fig. 6 and that plane strain conditions prevail. The 

geometry of the cylinder is best described by a cylindrical polar coordinate system 

(r, , z); then let the principal strain rates be ( , , )r z     , the principal stresses be 

( , , )r z    and ( )r  the von-Mises equivalent stress. The hoop and radial 

displacement rates are given by v and rv respectively. The boundary conditions at 

the inner and outer surfaces are given by 

( ) ( ) 0r ra p b     (10) 

where p is the internal pressure. 

 

The solution procedure for this problem is well established [1, 2, 3, 12] and relies 

on the condition of volume constancy (incompressibility) 

, 0r r
r r

v dv

r dr       
      (11) 

to reveal that the radial displacement rate has the simple form 

r

C
v

r
  (12) 

where C is an integration constant. 
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For the conditions of radially symmetric plane strain it may be shown that the 

hoop strain rate can be related to the equivalent von Mises stress using the 

modified power law, Eqn.(5) by 

0 0 0

3

2

n

  
  

  
       




 (13) 

which may be combined with the first of Eqns.(11) and the boundary conditions 

(10) to obtain a nonlinear equation for the constant C (the details can be found in 

[6] or [7]). 

 

By introducing the dimensionless (normalized) variables 

2
0 0 3

r C b
s c

a aa

 
 

   


 

together with a load factor 
0

p


  we obtain, by combining Eqns.(10-13), the 

following nonlinear equation for c: 

1
2 21

2
3

c
f d


 

 
  

 
 

  (14) 

where ( ) nf s s s   . 

For a prescribed radius ratio , power exponent n, and load factor  the 

normalized constant c can be obtained. Then the hoop and radial stress 

distributions, ( ), ( )r     , as they vary with  , can be obtained as: 

 

1 1
2 2

1
2

( ) 1 2 1

3

( ) 1 2 1

3
r

c c
f f d

p

c
f d

p









 


   

  
  

 



    
     

    
  

   
  




 (15) 

 

respectively. As with the beam in bending the results will depend upon the load 

factor . 

 

The normalized maximum radial displacement rate occurs at the inside surface 

from Eqn.(12) and can be shown to be 
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,max

0

3rv
c

a





 (16) 

Due to the simplicity of the creep strain rates, also from Eqn.(12) the maximum 

hoop and radial stress also occur at the inside and are proportional to ,maxrv . 

 

Finally, the equivalent normalized stress distributions corresponding to pure 

power law can be obtained as [1, 2, 3, 12]: 

2 2 2 2

2 2

1 2 1 1 1

( ) ( )

1 1
1 1

n n n n

r

n n

n
n

p p


      

 

   
                                  
    

   
                   

     (17)

 

 

The linear (viscous) solution can be obtained from the above with n = 1. 

 

4. Results 

It is required to use some form of numerical analysis to solve each of the 

preceding problems: the beam in bending, Eqns. (8) & (9), and the pressurized 

thick cylinder, Eqns.(14), (15) & (16). Here both Mathcad and Matlab were used 

for the numerical analysis to ensure converged independently checked solutions. 

In their study of these two problems Naumenko, Altenbach & Gorash [6] focused 

on the effect of the stress range constitutive model change in each component’s 

behavior compared to the limiting cases of linear (viscous) behavior and pure 

power law creep. They usefully identified for each case an approximate limiting 

stress/load level above which the pure power law could be applied and showed 

that below this load level the stress distributions were affected by linear (viscous) 

behavior. A few representative stress distributions were presented for each case. 

In this paper a more detailed study of the behavior of these simple structures using 

a modified power law is presented including a more detailed discussion of the 

effect on stress distributions, deformation characteristics (which were not covered 

in [6]) and the role of simplified methods of analysis. 
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4.1 Pure bending of a beam 

The normalized curvature rate,  , and axial stress distribution, ( )s  , are found 

from a solution of Eqns.(8) & (9). Solutions depend upon the load factor, , and 

power exponent, n, in this case. 

As in [6] the normalized stress distribution 
( )

/

s

M W

 


  can be plotted from the 

beam centerline to the outer fiber ( 1  ); this normalized stress corresponds to 

the ratio between the computed stress and the maximum linear (equivalent elastic) 

stress. Results are shown in Fig.7 for n = 3, 7 & 12 for various values of the load 

factor  together with the pure linear and pure power law stresses. It can be seen 

that the stress distributions tend to the pure linear solution as the value of  

decreases and the pure power solution as the value of  increases. For higher 

values of the power index n the stress distribution tends to be almost identical to 

the pure power law solution as the value of  increases; however for smaller 

values of n the maximum stress at the outer fiber remains larger than the pure 

power law. This can also be seen in a plot of the variation of maximum 

normalized stress at the outer fiber with load factor , Fig.8. Even at high values 

of the load factor, where a large part of the stress distribution would be well above 

the transition stress and in the power law regime, for lower values of the power 

exponent n the linear viscous component of the constitutive equation still has an 

effect – a feature which is not apparent from [6]. Further, Fig.7 clearly shows the 

presence of a ‘skeletal point’ [1]. The skeletal point is a point through the 

thickness where the stress is virtually independent of the creep law used. It was 

first noted by Anderson et al. [15] The presence of a skeletal point in structures 

subject to creep was important to the development of ‘reference stress’ 

methodology for high temperature (creep) design [16,17]. The skeletal point 

concept was later extended by Seshadri [18] who demonstrated the existence of 

multiple such points – called R-nodes - in complex components which could be 

used not only for the estimation of behavior at high temperature but also for 

simplified estimation of limit loads. The significance of the results shown in Fig.7 

are that the location of the skeletal point, and the corresponding normalized stress 

value, are almost independent of the load factor  as well. Of course the (un-

normalized) stress at the skeletal point does depend on the load factor, being 



10 

proportional to the applied load. The skeletal point could be seen in the results 

reported in [6] but its significance was not noted. 

 

Further, in pure power law creep it has been observed that the maximum stress in 

a component typically exhibits a linear variation with the reciprocal of the power 

exponent, n, [1, 19]. For the beam in bending, the maximum normalized stress at 

the outer fiber, is exactly obtained as  

max 2 1

/ 3M W n


   

in which the linear variation with 1/n is evident. The limiting values of n =1 and 

ncan be shown to correspond to linear elastic and perfectly-plastic 

maximum stress. This feature of the pure power law has been demonstrated for 

many components and load conditions [1] (a recent example is the peak stress in 

an oval pressurized pipe bend [20]). Fig.9 plots the variation of maximum 

normalized stress with 1/n for various values of the load factor  for the modified 

power law. It can be seen that provided the load factor 1  the normalized 

maximum stress decreases from n = 1 as 1/n decreases towards n . The 

variation tends towards linear with 1/n as the load factor increases. The following 

may also be observed if 1  : (a) in all cases as 1n  the normalized maximum 

stress tends to 1, (b) in all cases as n  the maximum stress (seems to) tend to 

a value of 2/3, as the pure power law. As a consequence it may be concluded that, 

to a good (engineering) approximation, above a certain value of load factor the 

maximum stress variation with power exponent using a modified power law can 

be well approximated by the pure power law solution, which itself can be well 

estimated from linear elastic and perfectly plastic solutions. 

 

The study reported in [6] did not consider the deformation characteristics of the 

modified power law.  Here the behavior of the normalized curvature rate will be 

examined in more detail. Plots of normalized curvature rate,  , against the load 

factor, , for various values of the power exponent n are shown in Fig.10 – part 

(a) shows the complete set of plots for the range of variables studied, while part 

(b) focuses on a smaller region using a log/log plot. Fig.11 shows the equivalent 

pure power law solution 
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2 1

3

n
n

n
    

 
  

 

for comparison. It can be seen that for values of the load factor less than a ‘cross-

over’ point just less than 1.5  the variation of curvature rate with load factor is 

almost linear and the linear viscous part of the constitutive equation dominates. 

This behavior can be further seen in Fig. 12 where curvature rate is plotted against 

the power index n for various values of the load factor - part (a) shows the 

complete set of plots for the range of variables studied, while part (b) focuses on a 

smaller region with a log/log plot. It can be seen that for 1.5  the curvature rate 

is almost independent of the power index n. This feature is perhaps curious since 

the stress distributions for such values of load factor are different from the 

equivalent linear distributions and the normalized longitudinal strain rate is 

proportional to the curvature rate, e   . This observation prompted an 

examination of the relation between the curvature rates (and therefore also strain 

rates) from the pure linear, pure power law and modified power law constitutive 

relations. It turns out that, depending on the load factor, deformations using the 

modified power law can be reasonably estimated by simply adding the 

deformations from pure linear and pure power law in this example. If the load 

factor is close to (and less than) the ‘cross-over’ value for the load factor from 

Fig.10 then this simple estimation can underestimate by up to 20% for large 

values of the power exponent n, but is much less otherwise as shown in Fig.13. 

This is an attractive observation: variations in strain rate predictions due to creep 

testing, scatter and curve fitting can have similar error levels and the implication 

(at least in this simple example) is that deformation rates for a material modeled 

by the modified power law could simply be obtained from superimposing 

equivalent linear deformations and pure power law creep deformations. The latter 

could be estimated for design purposes using reference stress or other robust 

simplified methods,. (High temperature creep design rules are more typically 

based on deformation rather than stress in the first instance). 
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4.2 Pressurized thick cylinder 

The simple thick cylinder problem allows a study of creep under a multi-axial 

stress state. For a modified power law, the solution of Eqns. (14), (15) & (16) 

depends not only on the power index n and load factor  as for the beam in 

bending, but also on a geometry factor - the radius ratio . The cylinder geometry 

can therefore be varied from moderately-thin to thick: in this study  varies takes 

values of 1.3, 2.0 and 3.0. In the following study only the circumferential (hoop) 

stress will be considered; the radial stress, due to the nature of the boundary 

conditions, Eqns. (10), varies in a simple fashion from –p to zero. As a basis for 

comparison, Figs. 14 (a) shows an example of  the hoop stress distribution, 

/ p , corresponding to a pure power law, for various values of the power index 

n, and to a linear viscous law (n = 1) from Eqns.(17) for  =  2.0. This plot  can be 

used toform the basis of comparisons of stress distribution changes due to  the 

effect of using the modified power law, where the load factor  must be taken into 

consideration. As is well known, the hoop stress variation through the thickness of 

the cylinder in all three cases changes from the pure linear case, where the 

maximum stress is at the inside surface, to the pure steady state, where the 

maximum stress is at the outside, as can be seen from Fig. 14(a) These limiting 

cases then may be compared to the hoop stress distributions as the load factor  

varies from 0.2, 0.7, 0.9 & 2.0; these are not reproduced in full here but can be 

found in Online Resource 1. Examining each of the plots of  Online Resource 1 it 

can be seen that as the load factor increases the hoop stress distribution changes 

from a form similar to pure linear to that of the pure power law. For the 

moderately thick cylinder (  = 1.3) the change occurs between load factors 0.2 & 

0.7, Fig. 14 (b) & (c), while for the two thick cylinders ( = 2.0 & 3.0) the change 

occurs between load factors 0.7 & 0.9, Fig 14(d) & (e), and 0.9 & 2.0 

respectively. More detailed studies show that for the case  = 3.0 the change 

occurs between load factor 0.9 & 1.3. It is clear then (this was perhaps not 

immediately clear from [6]) that the influence of the linear component of the 

modified power law is more evident as the thickness increases in the sense that the 

power law component does not dominate until higher values of the load factor. 

This reflects the fact that the overall stress magnitude reduces as the thickness 

increases. Further, as in the case of the beam in bending, an approximate ‘skeletal 
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point’ can be observed: the position of this point moves outwards as the cylinder 

thickness increases while the magnitude of the stress at this point decreases. Close 

to the values of load factor at which the behavior changes from being more 

dominated by the power law component than the linear component of the 

modified power law the skeletal point is perhaps less distinct, but arguably the 

trend is clear enough for engineering design purposes, as discussed for the beam 

in bending. In fact if the von-Mises equivalent stress / p is plotted instead, the 

skeletal point becomes more distinct. Finally, as in the case of the beam in 

bending, the position of the skeletal point and magnitude of the corresponding 

normalized stress value are again almost independent of the load factor  with the 

(un-normalized) stress being proportional to the applied pressure at the skeletal 

point. 

 

The study of the beam in bending in Sec. 4.1 showed that the maximum stress 

exhibited an almost linear variation with the reciprocal of the power index, 1/n. 

This observation would need more careful interpretation for the thick cylinder 

since, as discussed from Fig. 14, the position of the maximum hoop stress changes 

from the inner to the outer surface when considering pure linear and pure power 

law. Fig.15 plots the (normalized) outer surface stress as a function of 1/n (with n 

in the range 3 to 20) for various values of the load factor and for  = 1.3, 2.0 & 

3.0. It can be seen that in each case, above some transition value of the load 

factor, the outer stress is indeed sensibly linear with  1/n. The limiting values of 

the classical pure linear  1n   and pure power law nare also indicated on 

Fig.15 and it is apparent that the calculated results for the modified power law, 

again above some transition value of the load factor, do tend to these limiting 

values. 

 

Finally, as for the beam in bending, the study reported in [6] did not consider the 

deformation characteristics for the thick cylinder. The normalized maximum 

displacement at the inside surface, Eqn.(16), is plotted in Fig.16 against the load 

factor  for various values of n - a log-log scale is used for discussion purposes. 

Three values of thickness are used as before and in each case, similar to the beam 

in bending, there is a cross-over value of load factor below which the variation of 

maximum displacement is almost linear with respect to the load factor (this can be 
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better verified using a linear scale on each axis). Above the cross-over point the 

variation of the (log) maximum displacement is effectively linear with respect to 

the (log) load factor, suggesting a power relationship and the possible existence of 

a reference stress. The cross-over point itself corresponds to that noted for the 

hoop stress distribution as it changes from a form similar to pure linear to that of 

the pure power law. For the moderately thick cylinder (  = 1.3) the change occurs 

between load factors 0.2 & 0.7, for the smaller thick cylinders ( = 2.0) the 

change occurs between load factors 0.7 & 0.9  and for the larger thick cylinder ( 

= 3.0) the change occurs between load factor 0.9 & 1.3. Further, the maximum 

displacement can, with care, be reasonably estimated from a simple summation of 

the pure power law solution: 
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with the linear solution, n = 1 in the above. The percentage error is shown in Fig. 

17. As was the case with the beam in bending if the load factor is close to (and 

less than) the ‘cross-over’ value for the load factor from the maximum 

displacement plot, Fig.16, then this simple estimation can underestimate by up to 

20% for large values of the power exponent n, but is much less otherwise. The 

worst case corresponds to the thickest cylinder,  = 3.0 with the error reducing 

with thickness. These observations are also valid for the maximum (normalized) 

strain rates from Eqns.(11). As a result, the conclusions reached for the 

deformation characteristics of the beam in bending with the modified power law 

are equally applicable in this simple structure with a multi-axial stress state. 

 

5. Discussion & Conclusions 

This paper contains a more detailed study of work by Naumenko, Altenbach and 

Gorash [6,7] on how the stress systems in simple components – a beam in bending 

and a pressurized thick cylinder – are affected by using a modified power law, 

Eqn.(5), which contains both  linear viscous and power law components. 

Naumenko et al showed that the stress systems in both components had limiting 
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cases for low and high stress, namely the pure viscous and pure power law 

respectively. Between these limiting cases the (normalized) stress distributions 

depended not only on the exponent in the power law, but also some load factor 

since the modified power law solutions cannot be normalized to eliminate applied 

load. In this study the analysis has been extended to examine the role of simplified 

methods for estimating stress for design purposes and also to investigate the effect 

of the modified power law on deformation rates. 

 

It is clear that the stress distributions for the beam in bending, Fig.7, and thick 

cylinder, Fig.14, change considerably from the limiting cases of pure linear 

viscous and pure power law, especially as the respective load factor changes, 

especially close to the transition from linear dominance to power law dominance. 

Nevertheless some characteristic features of the stress distributions found for pure 

power law can still be seen in both components: (i) the presence of a skeletal point 

[15,16], where the normalized stress value is almost independent of the exponent 

in the power law and also the load factor, and (ii) above some transition load 

factor the maximum stress is approximately linear with respect to the reciprocal of 

the power exponent, 1/n, with the limiting cases of 1n  and n  remaining 

the linear viscous solution and perfectly plastic solutions respectively, as in the 

case of the pure power law [19]. The latter seems to be valid even though large 

parts of the component continue to be dominated by the linear component, 

although the maximum stress location is dominated by the power law component. 

It has also been demonstrated that the maximum displacement and strain rates in 

these two components can be sensibly estimated through a superposition of the 

pure linear and pure power law solutions, except for load factors close to the 

transition from linear to power law dominance coupled with high values of the 

power exponent, n, Figs 13 & 17. The worst estimates are no more than 20% 

lower than the true solution  and for a fairly wide range of load factor no more 

than 10% - this being well within currently acceptable bounds for scatter in creep 

data. There is the clear implication that maximum deformation rates can be 

reasonably estimated (as a lower bound in both examples) from superposition of 

linear and power law solutions, the latter allowing simplified estimates using 

reference stress, linear elastic and perfectly plastic limit solutions [1-3].  
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In conclusion, it is apparent that the simple robust methods developed for the 

estimation of maximum stress and deformation rate of components subject to pure 

power law creep [1-3] continue to have some relevance for the modified power 

law. Further work in  the area of steady creep therefore includes a verification of 

these results for more complex structures using detailed finite element analysis 

and a more detailed study of the range of applicability of the simplified methods. 

Indeed, this study has only considered steady creep under constant load and gives 

no consideration of relaxation and redistribution of stress. Naumenko et al [6] 

briefly examined relaxation of a bar using the modified creep law, demonstrating 

that a stress range dependent creep law could have significant effect. That 

example has been extended by the author [14] to more complex structures 

undergoing creep relaxation, in particular elastic follow-up: it is shown there that 

a stress range dependent creep law wholly alters the time dependent structural 

response, unlike the steady creep cases described herein where familiar features 

are retained. 
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Fig. 1 Steady creep of austenitic AISI 316 L(N) 550-650C after [9] 

Fig. 2 Steady creep of  0.5Cr0.5Mo0.25V after [4] 
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Fig. 4 Steady creep 9%Cr steel at 600C after [6] 

Fig. 3 Steady creep of austenitic AISI 316 L(N) 550-750C after [9] 
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Fig. 5 Geometry and loading of a beam with rectangular cross section 

Fig. 6 Geometry and loading of a pressurized thick cylinder  
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Fig. 7 Normalized stress distributions for beam in bending, n = 3, 7 & 12 



22 

Fig. 8 Variation of maximum normalized stress with load factor 

Fig. 9 Variation of maximum normalized stress with load 1/n 
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Fig. 10a Variation of maximum normalized curvature rate with load factor 

Fig. 10b Variation of maximum normalized curvature rate with load factor: zoomed view with log/log plot 

Fig. 11 Variation of maximum normalized curvature rate with load factor: pure power law creep 
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Fig. 12a Variation of maximum normalized curvature rate with n 

Fig. 12b Variation of maximum normalized curvature rate with n: zoomed 

view with log/log plot 
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Fig. 13 Percentage error in normalized curvature rate comparing modified 

power law and superposition of pure linear and pure power law 
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Fig. 14a  Normalized hoop stress distributions in pressurized cylinder: pure linear and 

power law creep for  = 2.0 
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Fig. 14 b c Normalized hoop stress distributions in pressurized cylinder 

using modified power law,  = 1.3 
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Fig. 14 d e Normalized hoop stress distributions in pressurized cylinder 

using modified power law,  = 2.0 
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 Fig. 15 Variation of outer surface hoop stress with 1/n 
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 Fig. 16 Variation of maximum normalized displacement with load factor 
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 Fig. 17 Percentage error in maximum normalized displacement comparing 

modified power law and superposition of pure linear and pure power law 


