Picture of satellite hovering above Earth

Open Access research exploring new frontiers in aerospace engineering...

Strathprints makes available Open Access scholarly outputs by the Department of Mechanical & Aerospace Engineering at Strathclyde, which includes an emphasis on air and space research. The Advanced Space Concepts Laboratory (ASCL), the Future Air-Space Transportation Technology Laboratory (FASTTlab) and the Intelligent Computational Engineering Laboratory (ICElab) specialise in this work.

The ASCL undertakes frontier research on visionary space systems, delivering radically new approaches to space systems engineering. Meanwhile, FASTTlab seeks to revolutionise the global air-space transportation systems and infrastructure. ICElab develops advanced research on artificial and computational intelligence techniques with particular focus on optimisation, optimal control, uncertainty-based multidisciplinary design optimisation and machine learning applied to the design and control of complex engineering systems.

Learn more and explore the Open Access research by ASCL, FASTTlab and ICElab. Or, explore all of Strathclyde's Open Access research...

Numerical investigation of the radial quadrupole and scissors modes in trapped gases

Wu, Lei and Zhang, Yonghao (2012) Numerical investigation of the radial quadrupole and scissors modes in trapped gases. EPL: A Letters Journal Exploring the Frontiers of Physics, 97. pp. 1-6. ISSN 0295-5075

[img] PDF
Zhang_YH_Pure_Numerical_investigation_of_the_radial_quadrupole_and_scissors_modes_in_trapped_gases_Jan_2012.pdf
Preprint

Download (157kB)
[img] PDF
Zhang_YH_Numerical_investigation_of_the_radial_quadrupole_and_scissors_modes_in_trapped_gases_Jan_2012.pdf
Final Published Version

Download (356kB)

Abstract

The analytical expressions for the frequency and damping of the radial quadrupole and scissors modes, as obtained from the method of moments, are limited to the harmonic potential. In addition, the analytical results may not be suciently accurate as an average relaxation time is used and the high-order moments are ignored. Here, we propose to numerically solve the Boltzmann model equation in the hydrodynamic, transition, and collisionless regimes to study mode frequency and damping. When the gas is trapped by the harmonic potential, we nd that the analytical expressions underestimate the damping in the transition regime. In addition, we demonstrate that the numerical simulations are able to provide reasonable predictions for the collective oscillations in the Gaussian potentials.