Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents

Pritchard, David and Hogg, Andrew J. and Roberts, William (2002) Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Continental Shelf Research, 22 (11-13). pp. 1887-1895. ISSN 0278-4343

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe a mathematical model of the sediment transport resulting from cross-shore tidal currents on an intertidal mudflat. The model is integrated numerically to determine the long-term (''equilibrium'') behaviour of the morphodynamic system, and to investigate how the morphology of the flats depends on tidal range and sediment supply.Under a sinusoidal tide, the equilibrium flat is approximately linear below mean sea level (MSL) and convex above MSL, and advances seawards over long timescales. The cross-shore width of the flat is independent of tidal range, and increases with increasing sediment supply. Tidal asymmetry (flood- or ebb-dominance) leads to a steeper flat, and ebb-dominance can cause the flat to retreat landwards in the long term. Under a spring-neap tidal cycle, the shape of the equilibrium profile is very similar to that for a fixed tidal range, but the rate of accretion is significantly reduced.