Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Wind turbine condition assessment through power curve copula modeling

Gill, Simon and Stephen, Bruce and Galloway, Stuart (2012) Wind turbine condition assessment through power curve copula modeling. IEEE Transactions on Sustainable Energy, 3 (1). pp. 94-101. ISSN 1949-3029

[img]
Preview
Text (Gill-etal-TSE2012-wind-turbine-condition-assessment-through-power-curve-copula-modeling)
Gill_etal_TSE2012_wind_turbine_condition_assessment_through_power_curve_copula_modeling.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Power curves constructed from wind speed and active power output measurements provide an established method of analyzing wind turbine performance. In this paper it is proposed that operational data from wind turbines are used to estimate bivariate probability distribution functions representing the power curve of existing turbines so that deviations from expected behavior can be detected. Owing to the complex form of dependency between active power and wind speed, which no classical parameterized distribution can approximate, the application of empirical copulas is proposed; the statistical theory of copulas allows the distribution form of marginal distributions of wind speed and power to be expressed separately from information about the dependency between them. Copula analysis is discussed in terms of its likely usefulness in wind turbine condition monitoring, particularly in early recognition of incipient faults such as blade degradation, yaw and pitch errors.