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Abstract— Power curves constructed from wind speed and

active power output measurements provide an established
method of analyzing wind turbine performance. In this paper it is
proposed that operational data from wind turbines are used to
estimate bivariate probability distribution functions representing
the power curve of existing turbines so that deviations from
expected behavior can be detected. Owing to the complex form of
dependency between active power and wind speed, which no
classical parameterized distribution can approximate, the
application of empirical copulas is proposed; the statistical theory
of copulas allows the distribution form of marginal distributions
of wind speed and power to be expressed separately from
information about the dependency between them. Copula
analysis is discussed in terms of its likely usefulness in wind
turbine condition monitoring, particularly in early recognition of
incipient faults such as blade degradation, yaw and pitch errors.

Index Terms— Wind power generation, Energy conversion,
Power generation reliability.

I. INTRODUCTION

IND power based renewable energy has seen dramatic
growth over the past decade, which is set to continue as
many countries implement stringent targets for

sustainability and emissions reduction. The UK government is
aiming to generate 20% of the country’s electricity from wind
turbines by 2020, up from 3% in 2008 [1] to form part of the
European Union’s target of producing 20% of all energy from
renewable sources [2]. A supporting trend in wind generation
is the move towards larger turbines in offshore locations.
Notable examples include Danish plans to double offshore
wind capacity from 661MW to 1256MW over the coming four
years [3] and plans for 25 GW of wind generation as part UK
round 3 offshore sites [4].

Maintaining profitability with large offshore wind farms poses
a significant challenge as operation and maintenance costs are
significantly higher compared to those onshore, whilst turbine
availability is significantly less. Onshore turbine availability
can be maintained at levels up to 98% [5]; in comparison an
offshore farm in the South of England – Scroby Sands –
published average availability of 83% for 2007 [6]. Operation
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and maintenance (O&M) costs are also significantly higher
offshore: one estimate suggested O&M costs account for
approximately 10% of onshore total expenditure, offshore this
rises to 30% [7]. Initial work to translate onshore downtime
data to the offshore environment suggests that failure
downtime can be several multiples of the onshore average.
This stems from access issues and potentially limited
opportunities for windows in sea and wind conditions to return
the turbine to service. Failure rate in onshore turbines can be
as high as 6 failures per year per turbines for turbines with
capacity greater than 1MW, although most studies find rates
between 1 and 3 per year [8-9]. It is suggested in [10] that
failure rates of less than 0.5 per turbine per year are a likely
requirement of offshore operation.

One means of reducing the cost of maintenance and the effect
on availability is to implement condition monitoring and
preventative maintenance strategies on machines. These
techniques have matured for a range of rotating machines [11],
however they have only recently been applied to the specific
technical challenges of wind turbines. Wind turbines are
typically constructed from a number of subassemblies. Studies
of faults in these subassemblies give an idea of the importance
of monitoring and maintenance of specific turbine
components. Systems where the fault frequency is highest
include the electrical system, rotor, converter and yaw systems
[10]. Gearbox and generator failure, whilst not the most
common failure, do cause the greatest downtime per failure; it
has been estimated that a generator fault in an onshore turbine
can lead to 7 days downtime on average [9].

The power curve is an important metric of the performance of
a wind turbine; it relates the power output to the wind speed.
Traditionally, a power curves provide an expected relationship
under standard operating conditions, for example with
turbulence maintained within specified limits and air-density
corrections applied. Measurement for wind speed and power
must be made by following international specifications laid
down in standard IEC 61400 [12]. Power curves are often used
by manufactures as part of the technical specification of a
turbine, possibly a performance guarantee.

Power curves can be generated without the need for retrofitted
telemetry from operational SCADA data by utilizing wind
speeds measured by nacelle mounted anemometers [13]. The
variability of nacelle wind speed relative to free wind speed
makes it difficult to compare operational data with Original
Equipment Manufacturer (OEM) power curves. However, data
taken when a particular turbine is assumed operating correctly
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allows future performance to be benchmarked against this data
accounting for local variables such as turbulence and turbine-
wake interactions. This suggests that a probabilistic model
may prove useful; such a representation of wind speed and
power would allow probabilities for likelihood of pairs of
nacelle wind speed and power output to be computed.

The contribution of this paper is to develop a probabilistic
model of a power curve for condition monitoring purposes
based on copulas; modeling such a relationship is challenging
as the form of dependency between wind speed and active
power is clearly non-linear; copula statistics are used to deal
with the complexity of the relationship. In the section that
follows, condition monitoring techniques specific to wind
turbines are reviewed. Following this, Copula statistics are
introduced with their use illustrated with examples of their
application in other domains. In section IV, the application of
Copulas to modeling the power curve of a wind turbine is
developed. This unobtrusive, economic means of monitoring
the condition of the plant is the key contribution of this paper
and its practical use is demonstrated on SCADA data taken
from a fleet of operational wind turbines.

II. WIND TURBINE CONDITION MONITORING

Condition monitoring telemetry may be expensive or
impractical to retrofit so most modern wind turbines integrate
some condition monitoring systems into their design. These
may include sensors for drive train vibrations, analysis of
particulates in gearbox oils and blade strain gauges [14]. A
review of commercially available condition monitoring
systems is provided in [15].

Numerous methods have been employed to carry out system-
wide monitoring. Neural networks are the most common and
have been used in a number of studies to ‘data-mine’
relationships between variables recorded in SCADA data and
faults in the wind turbines [18]. SCADA data typically
includes active power output, wind speeds from nacelle
mounted anemometers, component temperatures, electrical
currents and power factors all with a frequency of 5 to 10
minutes. Data-mining algorithms can be used together with
historic SCADA data and fault information to estimate fault
likelihoods [19]. Data from neighboring turbines can be
combined to estimate the expected operation of one particular
turbine, this can be used to spot ‘soft’ faults that do not cause
the turbine to shut down, but can reduce performance [20-21].

Other methods proposed include Physics-based modeling [16]
where a model of the physical law operating in a gear box is
developed. The wind speed time-series seen by a particular
turbine is then applied to the model to estimate fatigue damage
and the likely condition of the gearbox. Petri-net analysis has
been applied to the cooling and lubrication systems of a wind
turbine gear box [17]. This method allows non-deterministic
modeling of processes that can lead to fault development.

Condition monitoring is now being combined with fault
likelihood estimation and automated maintenances scheduling
[22]. The ultimate aim is to notify operators when a
component is showing early signs of failure, maybe months

before a catastrophic failure occurs, allowing preventative
maintenance to be planned around weather and other O&M
activities.

III. WIND TURBINE OPERATION AND EFFICIENCY

The performance of a wind turbine can be visualized by its
power curve which relates the power output to the wind speed
observed thus giving a measure of performance. The key
features of a wind turbine power curve are illustrated in Fig. 1.

The power curve illustrates the operational regimes of a
wind turbine. Turbines do not operate at low wind speeds; if
the wind falls below a cut-in speed for a specified period of
time the turbine will switch off. Around the cut-in speed, it is
often necessary for the turbine to draw power from the
electrical grid to start up or maintain rotation during short
lulls, which can result in negative power production. At higher
wind speeds power increases approximately as the cube of the
wind speed until rated power is reached, which occurs at the
rated wind speed. In above rated operation the turbine control
system limits the power extracted from the wind attempting to
maintain a constant power output while at very high wind

Fig 2: Key features of a wind turbine power curve [29].

Fig 1: Kernel density estimate of the joint probability of wind speed and
power output.
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speeds – often 25m/s, the turbine shuts down to avoid
incurring damage.

Comparison between published power curves and
operational data is difficult for a number of reasons. OEM
curves are created under standard conditions, and are recorded
using a specific methodology that is not possible to reproduce
within an operating wind farm. Operational power curves
created from SCADA data use wind speeds measured by the
nacelle mounted anemometer. Results from these will differ
from the standard power curve due to local turbulence,
averaging period and turbine condition. Wind speeds
measured at the nacelle are significantly different from the
upstream speeds from which the OEM power curves are
constructed. Comparisons can be made between operational
power curves created using data from different months. This
provides a direct method of benchmarking the performance of
a specific turbine. Terrain and therefore wind conditions
remain the same between the two sets meaning the changes to
the power curve will come from changes in the condition of
the turbine its self. If the turbine can be assumed to be
operating correlly during a particular month, this data can be
used as a benchmark power curve for comparison with future
data set. In [13], this approach is used to build turbine specific
power curves models.

An extension of this is to consider this data as a sample
from an underlying bivariate probability distribution; this
interpretation is already implied by the scatter plot of active
power and wind speed seen in Fig. 1. A probabilistic model
has several attractive attributes that could not be achieved with
a simple curve fitting analysis. In the first instance, the model
would be a direct replacement for the power curve by creating
a contour density plot of joint probability density of measured
wind speed and active power output.

The example shown in Fig. 2 is produced from a kernel
density estimator [23], which has no parametric form but
provides an accurate representation of the density it is
intended to approximate by summing kernel functions placed
on every observed data point. Although computationally
expensive, this approach does produce an estimate in
situations where a parametric distribution is not a good fit.

IV. COPULA STATISTICS

There are circumstances when dependent variables are related
by more than linear dependence or correlation. Even if the
marginal densities of these variables have a known
distribution their joint distribution may not be known. In
complex situations, it is not guaranteed that the joint
distribution is the multivariate equivalent of the known
marginal distributions, even if such a multivariate distribution
exists.

Originating from Sklar’s Theorem [24], copulas are a way
of describing complex dependency structures and how to
relate them to the marginal distributions within a single
function.

The formulation of a copula for a bivariate distribution is as
follows [25]: Given two random and continuous variables X
and Y, the probability distribution, H(x,y),  is defined as:

   yYxXyxH  ,Pr, (1)

The marginal distributions of H are given by:

    YxXxFx ,Pr (2)

   yYXyFy  ,Pr (3)

The marginal distributions can be used to transform the
original random variables X and Y to new variables U and V
with uniform marginal densities on the range [0,1]:

   yFvxFu yx  ; (4)

For any continuous bivariate distribution, Sklar’s theorm
states that there exists a bivariate function, C, such that [24]:

   yxHvuC ,,  (5)

and C is a copula. To clarify, C is the bivariate distribution
joining u and v which are transformed variables with uniform
distribution:

      
 vVuU

yFxFCyxH yx





,Pr

,, (6)

Inverting equation (4) provides a way of estimating the
copula:

   vFyuFx yx
11 ;   (7)

And substituting into equation (5):

      vFuFHvuC yx
11 ,,  (8)

If H, Fx and Fy are known or can be estimated from data they
can be used to construct the copula.

Copulas are useful because they allow the marginal
distributions and the dependency structure to be specified
separately. Copulas have been applied extensively over the
past decade in economics to analyze situations where
relationships are non-linear and the dependency between the
variables is non-symmetric, for example the relationship
between variations in three or more exchange rates [26].
Recently, copulas have been applied in a biological context to
analyze the firing rate relationships between neurons [27].

Copula estimation can be achieved by fitting parameterized
copula families to data or alternatively by a number of non-
parametric techniques such as kernel density estimation [28].
In this paper a simple non-parametric method of copula
estimation is used. The marginal distributions, Fx and Fy,, and
the full bivariate distribution H are estimated from a large
baseline data set (approximately 6300 data points).
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V. COPULA POWER CURVE MODEL

A copula representation of a power curve can be constructed if
the power curve is considered as a bivariate joint distribution
[29].  Correct estimation of the wind speed and power
marginals are required to ensure the transformed variables
have a uniform distribution. Parameterized models such as
Weibull or mixture-of-normal distributions can be fitted.
However, unless a suitable fit is found this method may lose
the specifics of the operational condition of individual
turbines. Estimation of the marginal distributions is used to
form the estimate of the copula – the distribution of the
transformed variables u and v. Here non-parametric
estimation is used. This non-parametric function is used to
make the transformation. An example of an estimated power
curve copula is shown as a non-parametric probability density
estimate in Fig. 3.

This estimated copula power curve follows a straight line
between (0,0) and (1,1) and illustrates the dependency of the
data across the range [0,1]2 showing correct estimation of the
marginals. Features include a larger spread of data at the tails
compared to the center, this corresponds to a lower correlation
between wind speeds and powers around cut-in and above
rated. This highlights that the dependency between wind speed
and power changes with the operating regime. This precludes
the use of a single parameterized copula. The copula model
therefore needs to be either a piecewise ensemble of copulas
or an empirical copula.

The underlying copula is estimated here using a simple
empirical method. Baseline data, obtained from the normal
operation of the wind turbine, is transformed into copula
space, the region [0,1]2 is divided into 100x100 bins
corresponding to percentiles. A count is made of baseline data
in each bin to estimate copula density in that region. This
method is used as a simple first pass and a more sophisticated
estimator may be based on a kernel density method.

To demonstrate the resulting model in use, SCADA data for
wind speed and active power averaged from two wind turbines
at a site in central Scotland is used. The turbines are Bonus
600kW Mk IV machines based on a fixed-pitch, fixed-speed,
stall-control design. Five minute averages data is used.

VI. APPLICATION OF COPULAS TO POWER CURVE ANALYSIS

Exemplar or baseline operational data is taken from the first
two months of data for each turbine – April and May – and is
used to estimate the marginal distributions and empirical
copula. A total of 6300 data points cover the full range of
wind speeds and power outputs during this period. Visual
inspection of the power curve is used to ensure that the data is
without outliers and is nominally consistent with a turbine

Fig 3:   Transformation of a Power Curve into Copula space.
(a)

(b)

Fig 4:  Cumulative marginal distributions for (a - top) wind speed and (b -
lower) active power.

Fig 5: August power curve data mapped into copula space using
marginals from figure 4.
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operating correctly. Records with no output data are removed
as it is assumed that the turbine is not operational at these
times. The cumulative probability density functions are
estimated for the marginals by locating the percentile values
and using linear interpolation. The cumulative density
functions for turbine 1 are shown in Fig. 4 (a) and (b).

The baseline data is transformed to the copula variables
according to:

Where w represents wind speeds and p is turbine power
output.

Data is binned in two dimensions as described in section V;
the resulting copula density estimate is shown in Fig. 5. It
should be noted that results show high joint probability close
to the u=v line with some variation in spread, the region in
which data has greatest spread is at the tails. These areas
correspond to operation above rated wind speed at the top end,
and the region around cut-in speed at the bottom.

To compare data from subsequent months, the estimated
marginals, Fw and Fp, are used as transforms to map observed
data onto the empirical copula. The data for August is
transformed and the resultant frequency distribution is shown
in Fig. 5. During August readings corresponding to u<0.8
appear to follow the estimated empirical copula. For u>0.8 the
data drops below the empirical copula. Fig. 6 shows the
August data plotted as a power curve, with shading illustrating
the distribution of the baseline data. The drop in the August
values of u and v can be seen to correspond to a small
reduction of power outputs for wind speed measured above
rated. This drop-off of data relative to the baseline is observed
for all months from July to October. Whilst this effect is
relatively small, it can have a significant effect on energy
generation across an extended period.

In order to compare operational data with baseline across
time periods or plant, three statistical measures of similarity
are investigated. Since the original data is distributed about the
u=v line with dissimilar data becoming increasingly distant
from this two measured based on the sum-of-squared method
are proposed. The third measure based on a chi-squared type
statistic investigates the difference between the expected and
measured number of data points within each binned region of

the copula.

A. Sum of Squares Similarity Estimation

As data sampled from the underlying copula should lay, with
some spread about the u=v line a simple statistic for
comparison is to sum either the residuals or the square of the
residuals relative to this line:

for analyzing a data set of n data pairs, (vi, ui) where for each
data set the expected value of vi, that is , is given by the
simple equation u=v; this leads to the second equality in each
line. The two statistics R and R2 have different interpretations:
R will stay close to 0 if the distribution is symmetrical about
the u=v line and will not detect changes in the variability of
the data, it will however, detect data sets which deviate from
the u=v line, for example the results in Fig. 5.The R2 statistic
allows detection of changes to the variability of the data whilst
symmetry around the u=v line is maintained. This corresponds
to a turbine showing higher variability of outputs across the
operating range. Data plotted on the empirical copula for a
number of months shows that performance often matches
baseline throughout all the operating regimes except above
rated. As this corresponds to values of u greater than
approximately 0.8 the R and R2 statistics are calculated both
for entire range and the range u~[0.8,1]. Fig. 5 gives an
example of this.

B. Chi-squared Hypothesis Test
A chi-squared style statistic can be used to test how
appropriate a model is for a given data set. In this case how
well the test data is modeled by the estimated copula. Test
data for a particular month does not require the same
marginals as the baseline data, for example in a particularly
windy month they may be an excess of data at high u values.

   pFvwFu pw
11 ;   (9)
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Fig 6: August data plotted as power curve. Shading represents distribution
of baseline data.

TABLE I
ACROSS FULL RANGE OF U

Month R (x10-2) R2 (x10-6) χ2 (x10-4)

June 0.201 0.579 2.95905
July 1.32 1.36 1.419221

August 0.931 0.34 2.884236
September 1.60 1.22 2.637837

October 0.845 1.17 2.10833
November 0.459 0.726 2.218387
December 0.571 0.713 4.893074
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To account for this the chi-squared statistic is constructed to
test how well observed power-data fits the copula give wind
speed measurements:

     
n

nEnO uiuivu
2

2 


(12)

Where Oi is the observed number of data points given the total
observed points with the current u value summed over all
v(nu). Ei is the expected number of data points given nu, and n
is the total number of data points.

C. Application to case study data

The application of the copula analysis method is applied to
case study data. The method followed can be summarized by:

Step 1: Select baseline data; visual check to ensure
consistency

Step 2: Estimate marginals for wind speed and power
Step 3: Transform baseline data using estimated marginals

to produce empirical power curve copula
Step 5: Take new turbine data, transform using estimated

copula
Step 6: Use the statistics developed, R, R2 and χ2

Step 7: Do statistics show significant changes in
dependency from baseline? If yes go to Step 8.
Else go to step 9

Step 8: A change in power curve dependency has been
identified – notify operators of possible fault/
anomaly. Continue to Step 9.

Step 9: Take the next months data.

Tables I and II list the monthly R, R2, and χ2 values as
calculated for turbine 2 and plotted in Fig. 7. As noted above,
turbine 2 showed signs of sub-optimal operation during the
months of July to October with the copula representation
showing a droop for high values of U (transformed wind
speed).

Of the statistics analyzed, high R values occur during these
months. The difference is more pronounced for R across the
restricted range (RU~[0.8,1]) . The other statistics do not, in this

case, provide a reliable signature that matches the
observations. It is anticipated that each statistic will be useful
in detecting specific fault modes as each will leave a particular
signature on the power curve dependency data. The possible
correlation between signatures and fault modes is discussed in
the next section.

As an example of a simple warning system, monthly data in
which the value of RU~[0.8,1] ≥ 2 x 10-2 would provide a trigger
for operators of this turbine suggesting an incipient fault. The
particular value of this limit will differ between turbines. The
copula method outlined here provides a way of detecting
changes in the dependency between wind speed and power so
whilst 2 x 10-2 provides a useful value here, this is likely to
vary between turbines depending on the specific location
conditions. For example if a turbine sees a higher turbulence
level, the value of R is likely to be higher.

VII. DISCUSSION

The results from the previous section showed that the Copula
approach has the ability to measure and identify changes in
dependency between operationally measured wind speed and
power. These changes may be linked to specific faults, or
more gradual changes such as blade surface wear which on
their own can lead to sub-optimal performance.

The correlation of faults or anomalies to statistical signatures
is key to developing copula-power curve condition
monitoring. This initially would require detailed fault-logs and

TABLE II
ACROSS U RANGE GREATER THAN 0.8 TO 1.0

Month R (x10-2) R2 (x10-6) χ2 (x10-4)

June 0.831 7.97 8.91
July 5.0549 9.62 6.00

August 3.3389 12.9 7.68
September 1.7741 3.12 6.73

October 3.2123 16.0 5.74
November 1.7327 6.65 6.20
December 0.0137 4.28 12.7

(a)

(b)

Fig 7: Monthly statistics for case study data including suggested warning
limits; upper (a) u~[0,1], lower (b) u~[0.8,1]
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regular, detailed manual inspection of turbines to provide
information on issues like blade condition. Due to commercial
sensitivities fault log data is often difficult to gain access to. In
fact, many minor faults may go unnoticed and future work will
need to include more detailed observations of turbines.

This section provides some discussion on likely links
between the copula condition monitoring statistics and wind
turbine faults/anomalies. These may be difficult or impossible
to detect using current techniques and this section provides
suggestions which the authors intend to continue in future
work.

Faults/anomalies will change the dependency between wind
speed and power output and should therefore produce
signatures in the R, R2 and χ2 statistics. Specific fault modes
will affect the turbine system in different ways so
combinations of statistical signatures will be able to provide
suggestions on the type of fault the turbine is experiencing.

A. Blade Faults
Degradation of the blade surface leads to a reduction in power
production as the turbine will have reduced aerodynamically
efficient. The Copula-power curve will therefore lie below the
u=v line. In stall regulated machines such as those studies
here, this is likely to effect the onset of stall and may
contribute to the sub-optimal performance identified here. The
‘R’ statistic is likely to provide a good characterization of such
deviations, and provide information on the direction of power
production variation.

Minor blade damage may not be detectable using the current
sensor systems attached to wind turbines, however even a
small reduction in aerodynamic efficiency can have a
significant effect on the profitability of a turbine. Here the
changes in dependency caused by gradual changes in the
quality of the aerodynamic surfaces can be identified by the
proposed copula method.

B. Yaw System Faults
The yaw system attempts to maintain the turbine pointing
directly into the wind. Misalignment leads to lowered airflow
through the turbine and therefore lower power production.
This will occur across the wind speed range. The effect is
likely to be noticeable with a negative R value with the
signature appearing when calculated across the range u~[0,1].
In addition to this signature the values of R2 and χ2 would be
expected to increase.

C. Pitch System Faults
Most modern turbines are pitch regulated. Below ‘rated

wind speed’ the blades pitch to the angle which allows
greatest aerodynamic efficiency. With wind speed above rated
the blades pitch to reduce the fraction of power transferred
from the wind and to maintain rated power.  Faulty pitch
mechanisms are likely to show up through a greater variability
at all wind speeds, or may lead to over or under production of
power at high wind speeds. Increased variability will lead to
higher values of R2 and χ2

.The value of R is unlikely to provide
a clear signature as variability will occur above and below the
u=v line.

These three fault modes provide a subset of all possible
faults causing sub-optimal performance. The study of larger
data sets with more fault information will allow correlations to
be built up between copula statistics and faults. This provides
a clear aim of future research.

Copula-power curve condition monitoring provides a
method of analyzing dependency data that can complement
existing condition monitoring methods. Whilst neural-network
analysis of SCADA data typically studies correlations between
data over the past two or three measurements, copula will
allow comparison of dependencies over weeks, months or
longer. The use of copula methods to detect either minor faults
or performance degradation can be used to trigger more in-
depth fault-analysis such as running physics based models to
suggest possible faults modes.

VIII. CONCLUSIONS

The application of copulas to wind turbine power curves has
been shown to allow analysis of the underlying dependency
between wind speed and power; this paper has presented the
example of an empirical Copula tracking the non-linear and
non-stationary dependency between wind speed and active
power output from the SCADA data of two operational wind
turbines. Further developments may include the comparison,
using copulas of the dependency from two or more turbines,
and transforming data from one turbine using the marginal
distributions of another to allow comparison of the variability
of data at different levels of production.

This work provides a first pass at Copula modeling for power
curves. A more sophisticated method of parametric estimation
of marginals and dependency is required for the approach to
be maximally useful. This may take the form of a mixture
density estimate of the marginals and a cubic spline estimate
of the copula which would additionally capture and identify
changes in operating regime.  Additionally, features within
each regime could be identified by the parameterization of the
model such as the variance over the gradient of the linear part
of the curve which indicates the efficiency of the plant over its
useful operating range of wind speeds, including the region
between rated wind speed and cut-out where the machine is
operating at full power. Piecewise application of Copula
models to each of these regions may be sufficient to capture
these features of interest as local bivariate probability
densities.
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