Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Controllability of buildings : a multi-input multi-output stability assessment method for buildings with fast acting heating systems

Counsell, John and Khalid, Yousaf Ali (2011) Controllability of buildings : a multi-input multi-output stability assessment method for buildings with fast acting heating systems. In: CIBSE Technical Symposium 2011, 2011-09-06 - 2011-09-07.

[img] Microsoft Word
Counsell_J_Pure_Controllability_of_buildings_a_multi_input_multi_output_stability_assessment_...fast_heating_systems_Sep_2011.docx
Preprint

Download (613kB)

    Abstract

    The paper describes a methodology to assess the controllability of a building and its servicing systems, such as heating, lighting and ventilation. The knowledge for these methods has been transferred from design processes and methods used in the design of aircraft flight control systems to establish a modelling and design process for assessing the controllability of buildings. The paper describes a holistic approach to the modelling of the nonlinear and linear dynamics of the integrated building and its systems. This model is used to analyse the controllability of the building using Nonlinear Inverse Dynamics controller design methods used in the aerospace and robotics industry. The results show that this design approach can help the architects in their decisions on which building design and services to use. Furthermore, the results demonstrate how the same method can assist the control systems designer in developing complex control systems especially for buildings designed with a Climate Adaptive Building (CAB) philosophy.