Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles
Barnard, Amanda S. and Chen, Yu (2011) Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. Journal of Materials Chemistry, 21 (33). pp. 12239-12245. ISSN 0959-9428 (https://doi.org/10.1039/c1jm11677k)
Full text not available in this repository.Request a copyAbstract
Gold nanoparticles offer a range of highly desirable properties that are intrinsically linked to their size and shape, thereby providing tantalising opportunities for tailoring the nanomorphology for specific applications. The stability of different shapes has been mapped on a nanoscale phase diagram, but there are numerous experimental observations in the literature that do not conform to this prediction. This inconsistency has been attributed to dominant kinetic influences, but testing this hypothesis has remained challenging using conventional experimental or computational techniques. Presented here are results of a shape-dependent kinetic theory of nanomorphology, for modelling the evolution of facetted gold nanoparticles, and exploring the edifying relationship between seed (or nucleus) size and temperature. The study concludes that the frequent observation of icosahedral nanoparticles at thermodynamically-forbidden sizes is due entirely to their superior rate of coarsening, and that the shape of the thermodynamically preferred motifs can be moderated by controlling conditions during the early stages of formation.
-
-
Item type: Article ID code: 35395 Dates: DateEvent7 September 2011Published22 June 2011Published OnlineSubjects: Science > Physics > Solid state physics. Nanoscience Department: Faculty of Science > Physics
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 29 Oct 2011 04:20 Last modified: 05 Jan 2025 02:28 URI: https://strathprints.strath.ac.uk/id/eprint/35395