Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Maintenance of a calibration model for near infrared spectrometry by a combined principal component analysis-partial least squares approach

Setarehdan, S. and Soraghan, J.J. and Littlejohn, D. and Sadler, D. (2002) Maintenance of a calibration model for near infrared spectrometry by a combined principal component analysis-partial least squares approach. Analytica Chimica Acta, 452 (1). pp. 35-45. ISSN 0003-2670

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel strategy for building and maintaining calibration models has been developed for use when the future boundaries of the sample set are unknown or likely to change. Such a strategy could have an impact on the economics and time required to obtain and maintain a calibration model for routine analysis. The strategy is based on both principal component analysis (PCA) and partial least squares (PLS) multivariate techniques. The principal action of the strategy is to define how ''similar'' a new sample is to the samples currently defining the calibration dataset. This step is performed by residuals analysis, following PCA. If the new sample is considered to have a spectrum ''similar'' to previously available spectra, then the model is assumed able to predict the analyte concentration. Conversely, if the new sample is considered ''dissimilar'', then there is new information in this sample, which is unknown to the calibration model and the new sample is added automatically to the calibration set in order to improve the model. The strategy has been applied to a real industrial dataset provided by BP Amoco Chemicals. The data consists of spectra of 102 sequential samples of a raw material. The strategy produced an accurate calibration model for both target components starting with only the first four samples, and required a further 17 reference measurements to maintain the model for the whole sampling sequence, which was over a 1-year period.