Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase

Houslay, M.D. and Bushfield, M and Kilgour, E and Lavan, B E and Griffiths, S and Pyne, Nigel and Tang, I and Murphy, G (1990) Glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase. In: Activation and Desensitisation of Transducing Pathways. NATO ASI series, 44 . Springer-Verlag, pp. 63-83. ISBN 9783642836183

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Book chapter explains how glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase.