The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates
Donohue, L.A. and Lewis, D.B. and Munz, W.D. and Stack, M.M. and Lyon, S.B. and Wang, H.W. and Rafaja, D. (1999) The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates. Vacuum, 55 (2). pp. 109-114. ISSN 0042-207X
Full text not available in this repository.Request a copy from the Strathclyde authorAbstract
Ti0.43Al0.52Cr0.03Y0.02N films, which have been shown to exhibit a fine grain near equiaxed microstructure were found to exhibit a compressive residual stress of - 6.5 GPa in contrast to conventional columnar Ti0.44Al0.53Cr0.03N coatings which demonstrated - 3.8 GPa compressive stress. Novel coatings with this modified microstructure were also found to possess improved resistance to both dry oxidation and wet aqueous corrosion. Glancing angle parallel beam geometry X-ray diffraction (GAXRD) studies showed that in conventional Ti0.44Al0.53Cr0.03N films, severe oxidation initiated above 850 degrees C whilst oxidation of Ti0.43Al0.52Cr0.03Y0.02N started close to 950 degrees C. In an alkaline aqueous medium, Ti0.43Al0.52Cr0.03Y0.02N coatings deposited on steel showed an extended passive potential range and a significantly lower passive current compared with Ti0.44Al0.53Cr0.03N films of similar thickness. A similar improvement was evident in sulphuric acid where yttrium containing coatings passivated at high potential (Ti0.44Al0.53Cr0.03N films did not passivate). These effects may be ascribed to reduced porosity in the fine-grained Ti0.43Al0.52Cr0.03Y0.02N as well as the well-known effects of low concentrations of yttrium on high-temperature oxidation performance. (C) 1999 Elsevier Science Ltd. All rights reserved.
Creators(s): |
Donohue, L.A., Lewis, D.B., Munz, W.D., Stack, M.M. ![]() | Item type: | Article |
---|---|
ID code: | 34375 |
Keywords: | sputter deposition, tin coatings, films, titanium, growth, Mechanical engineering and machinery, Mining engineering. Metallurgy, Instrumentation, Surfaces, Coatings and Films, Condensed Matter Physics |
Subjects: | Technology > Mechanical engineering and machinery Technology > Mining engineering. Metallurgy |
Department: | Faculty of Engineering > Mechanical and Aerospace Engineering |
Depositing user: | Pure Administrator |
Date deposited: | 17 Oct 2011 14:02 |
Last modified: | 01 Jan 2021 10:01 |
URI: | https://strathprints.strath.ac.uk/id/eprint/34375 |
Export data: |