Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Systematic data set for structure-property investigations : solubility and solid-state structure of alkaline earth metal salts of benzoates

Arlin, Jean-Baptiste and Florence, Alastair J. and Johnston, Andrea and Kennedy, Alan R. and Miller, Gary J. and Patterson, Kirsty (2011) Systematic data set for structure-property investigations : solubility and solid-state structure of alkaline earth metal salts of benzoates. Crystal Growth and Design, 11 (4). pp. 1318-1327. ISSN 1528-7483

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new resource for studying structure property relationships is presented, namely a systematic database of 36 organic salt structures together with phase specific aqueous solubility data. The salts are derived from four M2+ cations (Mg2+, Ga2+, Sr2+, Ba2+) and nine substituted benzoate anions. The intrinsic solubility of the free acid is found to have a major contribution to make to salt solubility, but despite previous literature assertions, there appears to be little correlation of solubility with the polarity of the organic ions, with cation size, or with hydration state. Importantly, we also show that consideration of the array structure rather than just molecular considerations improves prediction of rank orders of solubility. Thus, hree-dimensional intermolecular networks (here formed with hydrogen bonding, M-O-M and M-N-M interactions, and halide interactions) are found to have lower aqueous solubilities than lower dimensional networks.