Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Systematic data set for structure-property investigations : solubility and solid-state structure of alkaline earth metal salts of benzoates

Arlin, Jean-Baptiste and Florence, Alastair J. and Johnston, Andrea and Kennedy, Alan R. and Miller, Gary J. and Patterson, Kirsty (2011) Systematic data set for structure-property investigations : solubility and solid-state structure of alkaline earth metal salts of benzoates. Crystal Growth and Design, 11 (4). pp. 1318-1327. ISSN 1528-7483

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new resource for studying structure property relationships is presented, namely a systematic database of 36 organic salt structures together with phase specific aqueous solubility data. The salts are derived from four M2+ cations (Mg2+, Ga2+, Sr2+, Ba2+) and nine substituted benzoate anions. The intrinsic solubility of the free acid is found to have a major contribution to make to salt solubility, but despite previous literature assertions, there appears to be little correlation of solubility with the polarity of the organic ions, with cation size, or with hydration state. Importantly, we also show that consideration of the array structure rather than just molecular considerations improves prediction of rank orders of solubility. Thus, hree-dimensional intermolecular networks (here formed with hydrogen bonding, M-O-M and M-N-M interactions, and halide interactions) are found to have lower aqueous solubilities than lower dimensional networks.