Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Quantitative SERRS for DNA sequence analysis

Graham, Duncan and Faulds, Karen (2008) Quantitative SERRS for DNA sequence analysis. Chemical Society Reviews, 37 (5). pp. 1042-1051. ISSN 0306-0012

Full text not available in this repository.Request a copy from the Strathclyde author


SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases are better than, fluorescence. In this tutorial review the conditions are explored which enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were the focus as they allow quantitative behaviour to be achieved in systems analogous to current fluorescence based approaches. The aggregation conditions required to obtain SERRS of DNA affect the sensitivity and the reproducibility and we describe the use of spermine as an effective aggregating agent to achieve excellent reproducibility and sensitivity. The nature of the label which is used, be it fluorescent or non fluorescent, positively or negatively charged, also affects the SERRS response and these conditions are again discussed. Finally, we show how to detect a specific target DNA sequence in a meaningful diagnostic assay using SERRS and how the approaches described previously in the review are vital to the success of such approaches.