Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Optimal minimum variance estimation for nonlinear discrete-time multichannel systems

Grimble, M.J. and Ali Naz, S. (2010) Optimal minimum variance estimation for nonlinear discrete-time multichannel systems. IET Signal Processing, 4 (6). pp. 618-629.

Full text not available in this repository. Request a copy from the Strathclyde author


A non-linear operator approach to estimation in discrete-time multivariable systems is described. It involves inferential estimation of a signal which enters a communication channel that contains non-linearities and transport delays. The measurements are assumed to be corrupted by a coloured noise signal correlated with the signal to be estimated. The solution of the non-linear estimation problem is obtained using nonlinear operators. The signal and noise channels may be grossly non-linear and are represented in a very general non-linear operator form. The resulting so-called Wiener non-linear minimum variance estimation algorithm is relatively simple to implement. The optimal non-linear estimator is derived in terms of the nonlinear operators and can be implemented as a recursive algorithm using a discrete-time non-linear difference equation. In the limiting case of a linear system, the estimator has the form of a Wiener filter in discrete-time polynomial matrix system form. A non-linear channel equalisation problem is considered for the design example.