Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

An evolutionary approach for interactive computer games

Yannakakis, G. N. and Levine, J. and Hallam, J. (2004) An evolutionary approach for interactive computer games. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC 04). UNSPECIFIED.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we introduce the first stage of experiments on neuro-evolution mechanisms applied to predator/prey multi-character computer games. Our test-bed is a computer game where the prey (i.e. player) has to avoid its predators by escaping through an exit without getting killed. By viewing the game from the predators’ (i.e. opponents’) perspective, we attempt off-line to evolve neural-controlled opponents capable of playing effectively against computer-guided fixed strategy players. Their efficiency is based on cooperation which emerges from an abstract type of partial interaction with their environment. In addition, investigation of behavior generalization demonstrated the crucial contribution of playing strategies in the development of successful predator behaviors. However, emergent well-behaved opponents trained off-line with fixed strategies do not make the game interesting to play. We therefore present an evolutionary mechanism for opponents that keep learning from a player while playing against it (i.e. on-line) and we demonstrate its efficiency and robustness in increasing the predators’ performance while altering their behavior as long as the game is played. Computer game opponents following this on-line learning approach show high adaptability to changing player strategies, which provides evidence for the approach’s effectiveness and interest against human players.