Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Growth by molecular beam epitaxy of amorphous and crystalline GaNAs alloys with band gaps from 3.4 to 0.8 eV for solar energy conversion devices

Novikov, S.V. and Staddon, C.R. and Foxon, C.T. and Yu, K.M. and Broesler, R. and Hawkridge, M. and Liliental-Weber, Z. and Denlinger, J. and Demchenko, I. and Luckert, Franziska and Edwards, Paul and Martin, Robert and Walukiewicz, W. (2011) Growth by molecular beam epitaxy of amorphous and crystalline GaNAs alloys with band gaps from 3.4 to 0.8 eV for solar energy conversion devices. Journal of Crystal Growth, 323 (1). pp. 60-63. ISSN 0022-0248

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Using low temperature MBE, we have shown that it is possible to grow amorphous GaN1-xAsx layers with a variable As content (0 < x < 0.8) on both crystalline (sapphire and silicon) and amorphous (glass and Pyrex glass) substrates. Despite the fact that the samples with high As content are amorphous, we observe a gradual continuous decrease of bandgap from similar to 3.4 to similar to 0.8 eV with increase in As content. To the best of our knowledge this is the first demonstration of homogeneous amorphous GaN-based alloys over a wide composition range. The large band gap range of the amorphous phase of GaNAs covers much of the solar spectrum. The amorphous nature of the GaNAs alloys is particularly advantageous since low cost substrates such as glass and Pyrex glass can be used for solar cell fabrication.