Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Geometric and constitutive dependence of Maxwell's velocity slip boundary condition

Lockerby, Duncan A. and Reese, Jason and Barber, Robert W. and Emerson, David (2004) Geometric and constitutive dependence of Maxwell's velocity slip boundary condition. In: Rarefied Gas Dynamics. AIP Conference Proceedings, 762 . American Institute of Physics, pp. 725-730. ISBN 0-7354-0247-7

[img]
Preview
PDF
velocity_slip.pdf
Accepted Author Manuscript

Download (494kB)| Preview

    Abstract

    The general form of Maxwell’s velocity slip boundary condition for rarefied gas flows depends on both the geometry of the surface and the constitutive relations used to relate the viscous stress to rate of strain. The dependence on geometry is often overlooked in current rarefied flow calculations, and the generality of the constitutive dependence means the condition can also be usefully applied in regions where the Navier-Stokes equations fail, e.g. rarefied flows close to surfaces. In this paper we give examples illustrating the importance of both these dependencies and show, therefore, that implementing the general Maxwell condition produces substantially different results to conventional implementations of the condition. Finally, we also investigate a common numerical instability associated with Maxwell’s boundary condition, and propose an implicit solution method to overcome the problem.