Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Geometric and constitutive dependence of Maxwell's velocity slip boundary condition

Lockerby, Duncan A. and Reese, Jason and Barber, Robert W. and Emerson, David (2004) Geometric and constitutive dependence of Maxwell's velocity slip boundary condition. In: Rarefied Gas Dynamics. AIP Conference Proceedings, 762 . American Institute of Physics, pp. 725-730. ISBN 0-7354-0247-7

[img]
Preview
PDF
velocity_slip.pdf - Accepted Author Manuscript

Download (494kB) | Preview

Abstract

The general form of Maxwell’s velocity slip boundary condition for rarefied gas flows depends on both the geometry of the surface and the constitutive relations used to relate the viscous stress to rate of strain. The dependence on geometry is often overlooked in current rarefied flow calculations, and the generality of the constitutive dependence means the condition can also be usefully applied in regions where the Navier-Stokes equations fail, e.g. rarefied flows close to surfaces. In this paper we give examples illustrating the importance of both these dependencies and show, therefore, that implementing the general Maxwell condition produces substantially different results to conventional implementations of the condition. Finally, we also investigate a common numerical instability associated with Maxwell’s boundary condition, and propose an implicit solution method to overcome the problem.