Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A parallel compact-TVD method for compressible fluid dynamics employing shared and distributed-memory paradigms

Fico, Vincenzo and Emerson, David and Reese, Jason (2011) A parallel compact-TVD method for compressible fluid dynamics employing shared and distributed-memory paradigms. Computers and Fluids, 45 (1). pp. 172-176. ISSN 0045-7930

[img] PDF
Reese_JM_Pure_A_parallel_compact_TVD_method_for_compressible_fluid_dynamics..._distributed_memory_paradigms_05_Nov_2010.pdf
Preprint

Download (556kB)

    Abstract

    A novel multi-block compact-TVD finite difference method for the simulation of compressible flows is presented. The method combines distributed and shared-memory paradigms to take advantage of the configuration of modern supercomputers that host many cores per shared-memory node. In our approach a domain decomposition technique is applied to a compact scheme using explicit flux formulas at block interfaces. This method offers great improvement in performance over earlier parallel compact methods that rely on the parallel solution of a linear system. A test case is presented to assess the accuracy and parallel performance of the new method.