Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Advances in time-resolved measurement of magnetic field and electron temperature in low-magnetic-field plasmas

Den Hartog, D. J. and Ambuel, J. R. and Borchardt, M. T. and Caspary, K. J. and Den Hartog, E. A. and Falkowski, A. F. and Harris, W. S. and Ko, J. and Pablant, N. A. and Reusch, J. A. and Robl, P. E. and Stephens, H. D. and Summers, H. P. and Yang, Y. M. (2011) Advances in time-resolved measurement of magnetic field and electron temperature in low-magnetic-field plasmas. Fusion Science and Technology, 59 (11). pp. 124-127. ISSN 1536-1055

Full text not available in this repository. Request a copy from the Strathclyde author


Internal time-resolved measurement of magnetic field and electron temperature in low-field ( 1 T) plasmas is a difficult diagnostic challenge. To meet this diagnostic challenge in the Madison Symmetric Torus reversed-field pinch, two techniques are being developed: 1) spectral motional Stark effect (MSE) and 2) Fast Thomson scattering. For spectral MSE, the entire Stark-split H spectrum emitted by hydrogen neutral beam atoms is recorded and analyzed using a newly refined atomic emission model. A new analysis scheme has been developed to infer both the polarization direction and the magnitude of Stark splitting, from which both the direction and magnitude of the local magnetic field can be derived. For Fast Thomson scattering, two standard commercial flashlamp-pumped Nd:YAG lasers have been upgraded to “pulse-burst” capability. Each laser produces a burst of up to fifteen pulses at repetition rates 1–12.5 kHz, thus enabling recording of the dynamic evolution of the electron temperature profile and electron temperature fluctuations. To further these capabilities, a custom pulse-burst laser system is now being commissioned. This new laser is designed to produce a burst of laser pulses at repetition frequencies 5–250 kHz.