UV-Raman scattering study of lattice recovery by thermal annealing of Eu+-implanted GaN layers
Pastor, D. and Hernandez, S. and Cusco, R. and Artus, L. and Martin, R. W. and O'Donnell, K. P. and Briot, O. and Lorenz, K. and Alves, E. (2006) UV-Raman scattering study of lattice recovery by thermal annealing of Eu+-implanted GaN layers. Superlattices and Microstructures, 40 (4-6). pp. 440-444. ISSN 0749-6036 (https://doi.org/10.1016/j.spmi.2006.06.020)
Full text not available in this repository.Request a copyAbstract
Lattice recovery of Eu-implanted GaN has been studied by means of Raman scattering under UV excitation. GaN epilayers implanted at 300 keV with doses ranging from 2 x 10(14) to 4 x 10(15) cm(-2) and subsequently annealed at 1000 degrees C for 20 min show an increasing degree of disorder as the implantation dose increases. Higher temperature annealings up to 1300 degrees C were also investigated in samples having an AlN capping layer. Disorder related modes, observed in samples annealed at 1000 degrees C, disappear at higher annealing temperatures, indicating an incomplete lattice recovery at 1000 degrees C. The Raman scattering spectra show resonant A(1)(LO) multiphonon scattering up to sixth order, whose relative intensities depend on the implantation dose. The intensity ratios between multiphonon peaks observed for the highest implantation doses suggest a spread of the resonance, which could be related to a heterogeneous strain distribution, also indicative of incomplete lattice recovery. (c) 2006 Elsevier Ltd. All rights reserved.
ORCID iDs
Pastor, D., Hernandez, S., Cusco, R., Artus, L., Martin, R. W. ORCID: https://orcid.org/0000-0002-6119-764X, O'Donnell, K. P. ORCID: https://orcid.org/0000-0003-3072-3675, Briot, O., Lorenz, K. and Alves, E.;-
-
Item type: Article ID code: 31063 Dates: DateEvent1 October 2006PublishedNotes: Symposium on Material Science and Technology of Wide Bandgap Semiconductors held at the 2006 Spring Meeting of the EMRS, Nice, FRANCE, MAY 29-JUN 02, 2006 Subjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 21 Jun 2011 12:35 Last modified: 04 Jan 2025 03:42 URI: https://strathprints.strath.ac.uk/id/eprint/31063