Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements

Summers, H.P. and Dickson, W.J. and O'Mullane, M.G. and Badnell, N.R. and Whiteford, A.D. and Brooks, D.H. and Lang, J. and Loch, S.D. and Griffin, D.C. (2006) Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements. Plasma Physics and Controlled Fusion, 48 (2). pp. 263-293. ISSN 0741-3335

[img]
Preview
PDF (strathprints003082.pdf)
strathprints003082.pdf
Accepted Author Manuscript

Download (400kB) | Preview

Abstract

The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project.