Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Estimating the probability of rare events : addressing zero failure data

Quigley, John and Revie, Matthew (2011) Estimating the probability of rare events : addressing zero failure data. Risk Analysis, 31 (7). pp. 1120-1132. ISSN 0272-4332

Full text not available in this repository. Request a copy from the Strathclyde author


Traditional statistical procedures for estimating the probability of an event result in an estimate of zero when no events are realized. Alternative inferential procedures have been proposed for the situation where zero events have been realized but often these are ad hoc, relying on selecting methods dependent on the data that have been realized. Such data-dependent inference decisions violate fundamental statistical principles, resulting in estimation procedures whose benefits are difficult to assess. In this article, we propose estimating the probability of an event occurring through minimax inference on the probability that future samples of equal size realize no more events than that in the data on which the inference is based. Although motivated by inference on rare events, the method is not restricted to zero event data and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use of the minimax procedure provides a risk adverse inferential procedure where there are no events realized. A comparison is made with the MLE and regions of the underlying probability are identified where this approach is superior. Moreover, a comparison is made with three standard approaches to supporting inference where no event data are realized, which we argue are unduly pessimistic. We show that for situations of zero events the estimator can be simply approximated with 1/2.5n, where n is the number of trials.