Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Stable droplets and growth laws close to the modulational instability of a domain wall

Gomila, Damià and Colet, Pere and Oppo, Gian-Luca and San Miguel, Maxi (2001) Stable droplets and growth laws close to the modulational instability of a domain wall. Physical Review Letters, 87 (19). ISSN 0031-9007

[img]
Preview
Text (strathprints002955)
strathprints002955.pdf
Accepted Author Manuscript

Download (147kB)| Preview

    Abstract

    We consider the curvature driven dynamics of a domain wall separating two equivalent states in systems displaying a modulational instability of a flat front. An amplitude equation for the dynamics of the curvature close to the bifurcation point from growing to shrinking circular droplets is derived. We predict the existence of stable droplets with a radius R that diverges at the bifurcation point, where a curvature driven growth law R(t)≈t1/4 is obtained. Our general analytical predictions, which are valid for a wide variety of systems including models of nonlinear optical cavities and reaction-diffusion systems, are illustrated in the parametrically driven complex Ginzburg-Landau equation.