Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Interstitial H2 in germanium by Raman scattering and ab initio calculations

Hiller, M. and Lavrov, E.V. and Weber, J. and Hourahine, B. and Jones, R. and Briddon, P.R. (2005) Interstitial H2 in germanium by Raman scattering and ab initio calculations. Physical Review B: Condensed Matter and Materials Physics, 72 (2005). pp. 153201-1. ISSN 1098-0121

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Single-crystalline germanium wafers exposed to hydrogen and/or deuterium plasma are studied by means of Raman scattering. The Raman frequencies are compared to results of ab initio calculations. For samples treated with pure hydrogen, Raman measurements performed at a temperature of 80 K reveal two sharp lines at 3826 and 3834 cm−1 with an intensity ratio of 3:1, which are assigned to ortho- and para-H2 trapped at the interstitial T site of the lattice.