Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light

Maclean, M. and MacGregor, S. J. and Anderson, J. G. and Woolsey, G. A. and Coia, J. E. and Hamilton, K. and Taggart, I. and Watson, S. B. and Thakker, B. and Gettinby, G. (2010) Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. Journal of Hospital Infection, 76 (3). pp. 247-251. ISSN 0195-6701

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The performance of a new decontamination technology, referred to as 'high-intensity narrow-spectrum light environmental decontamination system' (HINS-light EDS) was evaluated by a series of three studies carried out in a hospital isolation room used to treat burns patients. The ceiling-mounted HINS-light EDS emits high-intensity 405 nm light which, although bactericidal, is harmless to patients and staff thereby permitting continuous environmental disinfection throughout the day. Performance efficacy was assessed by contact agar plate sampling and enumeration of staphylococcal bacteria on environmental surfaces within the room before, during and after HINS-light EDS treatment. When the room was unoccupied, use of HINS-light EDS resulted in similar to 90% reduction of surface bacterial levels and when the room was occupied by an MRSA-infected burns patient, reductions between 56% and 86% were achieved, with the highest reduction (86%) measured following an extended period of HINS-light EDS operation. In an on/off intervention study, surface bacterial levels were reduced by 62% by HINS-light EDS treatment and returned to normal contamination levels two days after the system was switched off. These reductions of staphylococci, including Staphylococcus aureus and meticillin-resistant S. aureus, by HINS-light EDS treatment were greater than the reductions achieved by normal infection control and cleaning activities alone. The findings provide strong evidence that HINS-light EDS, used as a supplementary procedure, can make a significant contribution to bacterial decontamination in clinical environments. (C) 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.