Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Al1-xInxN/GaN bilayers: Structure, morphology, and optical properties

Lorenz, K. and Magalhaes, S. and Franco, N. and Barradas, N. P. and Darakchieva, V. and Alves, E. and Pereira, S. and Correia, M. R. and Munnik, F. and Martin, R. W. and O'Donnell, K. P. and Watson, I. M. (2010) Al1-xInxN/GaN bilayers: Structure, morphology, and optical properties. Physica Status Solidi B, 247 (7). pp. 1740-1746. ISSN 0370-1972

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

High quality Al1-xInxN/GaN bilayers, grown by metal organic chemical vapor deposition (MOCVD), were characterized using structural and optical techniques. Compositional analysis was performed using Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). The InN molar fraction x decreased approximately linearly with increasing growth temperature and ranged from x = 0.13 to 0.24. Up to x = 0.20 the layers grow pseudomorphically to GaN with good crystalline quality. These layers show a smooth surface with V-shaped pits. Two layers with InN contents around 24% showed partial strain relaxation. However, the mechanisms leading to relaxation of compressive strain are very different in the two samples grown both at similar temperature but with different growth rates. One sample shows a decreased c/a ratio, as expected for relaxation of the compressive strain, while In was shown to be homogeneously distributed with depth. The other sample started to grow with x = 0.24 but relaxed mainly by reduction of the incorporated InN content towards the lattice-match composition of x similar to 0.17. Both samples have an increased surface roughness. All samples show strong Al1-xInxN band edge luminescence with large bowing parameter and Stokes' shifts. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim