Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Bayesian methods to detect dye labelled DNA oligonucleotides in multiplexed raman spectra

Zhong, Mingjun and Girolami, Mark and Faulds, Karen and Graham, Duncan (2011) Bayesian methods to detect dye labelled DNA oligonucleotides in multiplexed raman spectra. Journal of Applied Statistics, 60 (2). pp. 187-206. ISSN 0266-4763

Full text not available in this repository. Request a copy from the Strathclyde author


Recent advances in the development of technology based on Raman scattering as a chemical analytical technique have made it possible to quantitatively detect spectral mixtures of multiple DNA sequences. However, to fully exploit these techniques inferential methodologies are required which can deconvolute the observed mixture and infer the compositionof distinct DNA sequences present in the overall composite. Inferring the spectral decomposition is posed as a model selection problem for a bilinear statistical model, and the required Markov chain Monte Carlo inferentialmethodology is developed. In particular a Gibbs sampler and reversible Jump Markov chain Monte Carlo methods are presented along with techniques based on the Bayesian Information Criterion, Thermodynamic Integration and the method proposed by Chib. The results reported in this paper are particularly encouraging highlighting that for multiplexed Raman spectra, inference of the composition of original sequences present in the mixture is possible to acceptable levels of accuracy. This statistical methodology makes the exploitation of multiplexed surface enhanced resonance Raman scattering spectra in disease identification a reality. A website containing the spectral data used in the paper as well as Matlab scripts implementing the proposed statistical methods is available at http://www.dcs.gla.ac.uk/inference/RJMCMC.