Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Nanofabrication of gallium nitride photonic crystal light-emitting diodes

Khokhar, A.Z and Parsons, K. and Hubbard, G. and Rahman, F. and MacIntyre, D.S. and Xiong, C. and Massoubre, D. and Gong, Z. and Johnson, N.P. and De La Rue, R.M. and Watson, I.M. and Gu, E. and Dawson, M.D. and Abbott, S.J. and Charlton, M.D.B and Tillin, M. (2010) Nanofabrication of gallium nitride photonic crystal light-emitting diodes. Microelectronic Engineering, 87 (11). pp. 2200-2207. ISSN 0167-9317

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

We describe a comparison of nanofabrication technologies for the fabrication of 2D photonic crystal structures on GaN/InGaN blue LEDs. Such devices exhibit enhanced brightness and the possibility of controlling the angular emission profile of emitted light. This paper describes three nano lithography techniques for patterning photonic crystal structures on the emitting faces of LEDs: direct-write electron beam lithography, hard stamp nanoimprint lithography and soft-stamp nanoimprint lithography with disposable embossing masters. In each case we describe variations on the technique as well as its advantages and disadvantages. Complete process details have been given for all three techniques. In addition, we show how high performance GaN dry etch techniques, coupled with optical process monitoring can transfer resist patterns into underlying GaN material with high fidelity.