Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Helicopter brownout - can it be modelled?

Brown, R.E. and Phillips, Catriona and Kim, Hyo Wan (2010) Helicopter brownout - can it be modelled? In: Royal Aeronautical Society Rotorcraft Group Conference: Operating Helicopters Safely in a Degraded Visual Environment, 2010-06-16 - 2010-06-17.

[img]
Preview
PDF (strathprints027364.pdf)
strathprints027364.pdf

Download (1MB)| Preview

    Abstract

    Significant progress has been made to date in modelling, computationally, the formation and development of the dust cloud that forms in the air surrounding the rotorcraft under brownout conditions. Modern computational methods are able to replicate not only the development of the dust cloud in appropriate operational scenarios, but also the sensitivity of the shape and density of the dust cloud to the detailed design of the rotorcraft. Results so far suggest that attempts to ameliorate brownout by aerodynamic means, for instance by modifying the rotor properties, will be frustrated to some extent by the inherent instability of the °flow field that is produced by the helicopter. Nonetheless, very recent advances in understanding the fundamental mechanisms that lead to the formation of the dust cloud may allow substantial progress to be made once certain elements of the basic physics of the problem are more fully understood and better quantified.