Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

A systematic approach in analyzing sustained oscillations in an NF-kB signal transduction pathway system

Lu, B. and Yue, H., The National Natural Science Foundation of China (30770560) (Funder) (2010) A systematic approach in analyzing sustained oscillations in an NF-kB signal transduction pathway system. Acta Biophysica Sinica, 26 (5). pp. 406-420.

[img]
Preview
PDF (strathprints026737.pdf)
strathprints026737.pdf

Download (1MB) | Preview

Abstract

Oscillation phenomenon is very common in biological systems. It is crucial to study oscillatory behaviors to understand gene regulation functions. Model-based analysis in combination with experimental study provides a new and systematic way to investigate biological oscillations. The nuclear factor-kB (NF-kB) signaling is an important signaling pathway that is involved in a variety of cellular processes including immune response, inflammation, and apoptosis. Recent studies revealed damped oscillations of NF-kB activity both experimentally and computationally, etc. In this work, based on a differential equation model, bifurcation analysis was used to examine whether it was possible for this system to produce sustained oscillations (limit cycle oscillations) rather than damped oscillations. Both one- and two-parameter bifurcation analyses have been performed and it was found that certain conditions could possibly result in sustained oscillations of nuclear NF-kB activity. The parameter regimes corresponding to such oscillations were calculated with this method.