Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

The role of circumstance monitoring on the diagnostic interpretation of condition monitoring data

Bahadoorsingh, S. and Rowland, S.M. and Catterson, V.M. and Rudd, S.E. and McArthur, S.D.J. (2010) The role of circumstance monitoring on the diagnostic interpretation of condition monitoring data. In: IEEE International Symposium on Electrical Insulation 2010 (IEEE ISEI), 2010-06-06 - 2010-06-09.

[img]
Preview
PDF (strathprints026477.pdf)
strathprints026477.pdf

Download (340kB) | Preview

Abstract

Circumstance monitoring, a recently coined termed defines the collection of data reflecting the real network working environment of in-service equipment. This ideally complete data set should reflect the elements of the electrical, mechanical, thermal, chemical and environmental stress factors present on the network. This must be distinguished from condition monitoring, which is the collection of data reflecting the status of in-service equipment. This contribution investigates the significance of considering circumstance monitoring on diagnostic interpretation of condition monitoring data. Electrical treeing partial discharge activity from various harmonic polluted waveforms have been recorded and subjected to a series of machine learning techniques. The outcome provides a platform for improved interpretation of the harmonic influenced partial discharge patterns. The main conclusion of this exercise suggests that any diagnostic interpretation is dependent on the immunity of condition monitoring measurements to the stress factors influencing the operational conditions. This enables the asset manager to have an improved holistic view of an asset's health.